1 School of Science, Wuhan University of Technology, Wuhan 430070, China; 2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract Eckstrom-adcock iron carbide (Fe7C3) is considered to be the main constituent of the Earth's inner core due to its low shear wave velocity. However, the crystal structure of Fe7C3 remains controversial and its thermoelastic properties are not well constrained at high temperature and pressure. Based on the first-principles simulation method, we calculate the relative phase stability, equation of state, and sound velocity of Fe7C3 under core condition. The results indicate that the orthorhombic phase of Fe7C3 is stable under the core condition. While Fe7C3 does reproduce the low shear wave velocity and high Poisson's ratio of the inner core, its compressional wave velocity and density are 12% higher and 6% lower than those observed in seismic data, respectively. Therefore, we argue that carbon alone cannot completely explain the thermal properties of the inner core and the inclusion of other light elements may be required.
Li-Li Fan(范莉莉), Xun Liu(刘勋), Chang Gao(高畅), Zhong-Li Liu(刘中利), Yan-Li Li(李艳丽), and Hai-Jun Huang(黄海军) First-principles calculations of high pressure and temperature properties of Fe7C3 2023 Chin. Phys. B 32 079101
[1] Hirose K, Labrosse S and Hernlund J 2013 Annu. Rev. Earth Pl. Sci.41 657 [2] Wood B J 1993 Earth. Planet. Sci. Lett.117 593 [3] Wood B J, Li J and Shahar A 2013 Rev. Mineral. Geochem.75 231 [4] Chen B, Li Z and Zhang D 2014 Proc. Natl Acad. Sci. USA111 17755 [5] Prescher C, Dubrovinsky L, Bykova E, Kupenko I, Glazyrin K, Kantor A, McCammon C, Mookherjee M, Nakajima Y and Miyajima N 2015 Nat. Geosci.8 220 [6] Liu J, Lin J F, Prakapenka V, Prescher C and Yoshino T 2016 Geophys. Res. Lett.43 12415 [7] Herbstein F H and Snyman J A 1964 Inorg. Chem.3 894 [8] Barinov V A, Tsurin V A and Surikov V T 2010 Phys. Metals Metallogr.110 474 [9] Bouchard J 1967 Ann. Chim.2 353 [10] Nakajima Y, Takahashi E, Sata N, Nishihara Y, Hirose K, Funakoshi K and Ohishi Y 2011 Am. Mineral.96 1158 [11] Fang C M, Van Huis M A and Zandbergen H W 2009 Phys. Rev. B80 224108 [12] Raza, Z, Shulumba N, Caffrey N M, Dubrovinsky L and Abrikosov I A 2015 Phys. Rev. B91 214112 [13] Litasov K D, Rashchenko S V, Shmakov A N, Palyanov Y N and Sokol A G 2015 J. Alloys Compd.628 102 [14] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [16] Blöchl P E 1994 Phys. Rev. B50 17953 [17] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [18] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [19] Togo A and Tanaka I 2015 Scr. Mater.108 1 [20] Liu Z L 2015 Comput. Phys. Commun.191 150 [21] Wang V, Liang Y Y, Kawazeo Y and Geng W T 2018 arXiv: 1806.04285 [cond-mat.mes-hall] [22] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun.267 108033 [23] Hinuma Y, Pizzi G, Kumagai Y, Oba F and Tanaka I 2017 Comput. Mater. Sci.128 140 [24] Voigt W 1910 Lehrbuch der Kristallphysik (Leipzig: Teubner and Walsh J B) p. 12 [25] Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Progress: A Handbook (Cambridge: MIT Press) p. 35 [26] Mookherjee M, Nakajima Y, Steinle-Neumann G, Glazyrin K, Wu X, Dubrovinsky L, McCammon C and Chumakov A 2011 J. Geophys. Res. Solid Earth116 B04201 [27] Li Y, Vočadlo L, Brodholt J and Wood I G 2016 J. Geophys. Res. Solid Earth121 5828 [28] Lai X, Zhu F, Liu J, Zhang D, Hu Y, Finkelstein G J, Dera P and Chen B 2018 Am. Mineral.103 1568 [29] Chen B, Gao L, Lavina B, Dera P, Alp E, Zhao J and Li J 2012 Geophys. Res. Lett.39 L18301 [30] Ghosh P S, Ali K, Vineet A, Voleti A and Arya A 2017 J. Alloys Compd.726 989 [31] Murnaghan F D 1944 Proc. Natl Acad. Sci. USA30 244 [32] Dewaele A, Loubeyre P, Occelli F, Mezouar M, Dorogokupets P I and Torrent M 2006 Phys. Rev. Lett.97 215504 [33] Dziewonski A M and Anderson D L 1981 Phys. Earth. Planet. In.25 297 [34] Das T, Chatterjee S, Ghosh S and Saha-Dasgupta T 2017 Geophys. Res. Lett.44 8776 [35] Huang H J, Fan L L, Liu X, Xu F, Wu Y, Yang G, Leng C W, Wang Q S, Weng J D, Wang X, Cai L C and Fei Y W 2022 Nat. Commun.13 1 [36] Liu J, Li J and Ikuta D 2016 J. Geophys. Res. Solid Earth121 1514 [37] Liu Z L, Cai L C, Chen X R, Wu Q and Jing F Q 2009 J. Phys-Condens. Mat.21 095408 [38] Fei Y, Murphy C, Shibazaki Y, Shahar A and Huang H 2016 Geophys. Res. Lett.43 6837 [39] Huang Y Q, Hou M Q, Gan B, Li X H, He D W, Jiang G, Zhang Y J and Liu Y 2022 J. Geophys. Res. Solid Earth127 e2021JB023645 [40] McDonough W F 2003 Treat. Geochem.2 547 [41] Pamato M G, Li Y, Antonangeli D, Miozzi F, Morard G, Wood I G, Vočadlo L, Brodholt J P and Mezouar M 2020 JJ. Geophys. Res. Solid Earth125 e2020JB020159
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.