Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084205    DOI: 10.1088/1674-1056/ac649a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers

Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛)
Institute of Photonics&Photon-technology, Northwest University, Xi'an 710069, China
Abstract  The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations. The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.
Keywords:  optical frequency combs      optical injection locking      dual-frequency lasers  
Received:  01 March 2022      Revised:  30 March 2022      Accepted manuscript online:  06 April 2022
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.60.Rn (Relaxation oscillations and long pulse operation)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62005215).
Corresponding Authors:  Hui Liu     E-mail:  liuhui_gzs@nwu.edu.cn

Cite this article: 

Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛) Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers 2022 Chin. Phys. B 31 084205

[1] Diddams S A, Vahala K and Udem T 2020 Science 369
[2] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[3] Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B and Chang H 2020 Chin. Phys. B 29 070602
[4] Lin Y G and Fang Z J 2018 Acta Phys. Sin. 67 160604 (in Chinese)
[5] Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T and Kippenberg T J 2020 Nat. Commun. 11 374
[6] Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hansch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W and Udem T 2008 Science 321 1335
[7] Ghelfi P, Laghezza F, Scotti F, Serafino G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F and Bogoni A Nature 507 341
[8] Picqué N and Hnsch T W 2019 Nat. Photon. 13 146
[9] Corkum P B and Krausz F 2007 Nat. Phys. 3 381
[10] Cundiff S T, Ye J and Hall J L 2001 Rev. Sci. Instrum. 72 3749
[11] Parriaux A, Hammani K and Millot G 2020 Adv. Opt. Photon. 12 223
[12] Torres-Company V and Weiner A M 2014 Laser Photon. Rev. 8 368
[13] Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332 555
[14] Chernikov S V, Dianov E M, Richardson D J, Laming R I and Payne D N 1993 Appl. Phys. Lett. 63 293
[15] Tong Z, Wiberg A O, Myslivets E, Kuo B P, Alic N and Radic S 2012 Opt. Express 20 17610
[16] Myslivets E, Kuo B P, Alic N and Radic S 2012 Opt. Express 20 3331
[17] Antikainen A and Agrawal G P 2015 J. Opt. Soc. Am. B 32 1705
[18] Antikainen A and Agrawal G P 2018 J. Opt. Soc. Am. B 35 1733
[19] Slavik R, Parmigiani F, Gruner-Nielsen L, Jakobsen D, Herstrom S, Petropoulos P and Richardson D J 2011 IEEE Photon. Technol. Lett. 23 540
[20] Scheller M, Baker C W, Koch S W, Moloney J V and Jason Jones R 2017 IEEE Photon. Technol. Lett. 29 790
[21] Baili G, Morvan L, Alouini M, Dolfi D, Bretenaker F, Sagnes I and Garnache A 2009 Opt. Lett. 34 3421
[22] Liu H, Gredat G, De S, Fsaifes I, Ly A, Vatre R, Baili G, Bouchoule S, Goldfarb F and Bretenaker F 2018 Opt. Lett. 43 1794
[23] Liu H, Gredat G, Baili G, Gutty F, Goldfarb F, Sagnes I and Bretenaker F 2018 J. Light. Technol. 36 3882
[24] Gredat G, Chatterjee D, Baili G, Gutty F, Sagnes I, Goldfarb F, Bretenaker F and Liu H 2018 Opt. Express 26 26217
[25] Zhang P, Mao L, Zhang X, Wang T, Wang L and Zhu R 2021 Opt. Express 29 16572
[26] Pillet G, Morvan L, Brunel M, Bretenaker F, Dolfi D, Vallet M, Huignard J-P and Le Floch A 2008 J. Light Technol. 26 2764
[27] Hu M, Ke Y, Li Q, Zhou X, Lu Y, Yang G and Bi M 2019 Opt. Express 27 13773
[28] Tan Y N, Jin L, Cheng L, Quan Z, Li M and Guan B O 2012 Opt. Express 20 6961
[29] Ducournau G, Szriftgiser P, Akalin T, Beck A, Bacquet D, Peytavit E and Lampin J F 2011 Opt. Lett. 36 2044
[30] Doumbia Y, Malica T, Wolfersberger D, Panajotov K and Sciamanna M 2020 Opt. Lett. 45 435
[31] Doumbia Y, Malica T, Wolfersberger D, Panajotov K and Sciamanna M 2020 Opt. Express 28 30379
[32] Fatadin I, Ives D and Wicks M 2006 IEEE J. Quantum Electron. 42 934
[33] Mogensen F, Olesen H and Jacobsen G 1985 IEEE J. Quantum Electron. 21 784
[34] Agrawal G P 1988 J. Opt. Soc. Am. B 5 147
[35] Carlson D R, Hickstein D D, Zhang W, Metcalf A J, Quinlan F, Diddams S A and Papp S B 2018 Science 361 1358
[1] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[2] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
No Suggested Reading articles found!