Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉)†, and Jintao Bai(白晋涛)
Institute of Photonics&Photon-technology, Northwest University, Xi'an 710069, China
Abstract The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations. The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62005215).
Corresponding Authors:
Hui Liu
E-mail: liuhui_gzs@nwu.edu.cn
Cite this article:
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛) Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers 2022 Chin. Phys. B 31 084205
[1] Diddams S A, Vahala K and Udem T 2020 Science 369 [2] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896 [3] Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B and Chang H 2020 Chin. Phys. B 29 070602 [4] Lin Y G and Fang Z J 2018 Acta Phys. Sin. 67 160604 (in Chinese) [5] Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T and Kippenberg T J 2020 Nat. Commun. 11 374 [6] Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hansch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W and Udem T 2008 Science 321 1335 [7] Ghelfi P, Laghezza F, Scotti F, Serafino G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F and Bogoni A Nature 507 341 [8] Picqué N and Hnsch T W 2019 Nat. Photon. 13 146 [9] Corkum P B and Krausz F 2007 Nat. Phys. 3 381 [10] Cundiff S T, Ye J and Hall J L 2001 Rev. Sci. Instrum.72 3749 [11] Parriaux A, Hammani K and Millot G 2020 Adv. Opt. Photon.12 223 [12] Torres-Company V and Weiner A M 2014 Laser Photon. Rev.8 368 [13] Kippenberg T J, Holzwarth R and Diddams S A 2011 Science332 555 [14] Chernikov S V, Dianov E M, Richardson D J, Laming R I and Payne D N 1993 Appl. Phys. Lett.63 293 [15] Tong Z, Wiberg A O, Myslivets E, Kuo B P, Alic N and Radic S 2012 Opt. Express20 17610 [16] Myslivets E, Kuo B P, Alic N and Radic S 2012 Opt. Express20 3331 [17] Antikainen A and Agrawal G P 2015 J. Opt. Soc. Am. B32 1705 [18] Antikainen A and Agrawal G P 2018 J. Opt. Soc. Am. B35 1733 [19] Slavik R, Parmigiani F, Gruner-Nielsen L, Jakobsen D, Herstrom S, Petropoulos P and Richardson D J 2011 IEEE Photon. Technol. Lett.23 540 [20] Scheller M, Baker C W, Koch S W, Moloney J V and Jason Jones R 2017 IEEE Photon. Technol. Lett.29 790 [21] Baili G, Morvan L, Alouini M, Dolfi D, Bretenaker F, Sagnes I and Garnache A 2009 Opt. Lett.34 3421 [22] Liu H, Gredat G, De S, Fsaifes I, Ly A, Vatre R, Baili G, Bouchoule S, Goldfarb F and Bretenaker F 2018 Opt. Lett.43 1794 [23] Liu H, Gredat G, Baili G, Gutty F, Goldfarb F, Sagnes I and Bretenaker F 2018 J. Light. Technol.36 3882 [24] Gredat G, Chatterjee D, Baili G, Gutty F, Sagnes I, Goldfarb F, Bretenaker F and Liu H 2018 Opt. Express26 26217 [25] Zhang P, Mao L, Zhang X, Wang T, Wang L and Zhu R 2021 Opt. Express29 16572 [26] Pillet G, Morvan L, Brunel M, Bretenaker F, Dolfi D, Vallet M, Huignard J-P and Le Floch A 2008 J. Light Technol.26 2764 [27] Hu M, Ke Y, Li Q, Zhou X, Lu Y, Yang G and Bi M 2019 Opt. Express27 13773 [28] Tan Y N, Jin L, Cheng L, Quan Z, Li M and Guan B O 2012 Opt. Express20 6961 [29] Ducournau G, Szriftgiser P, Akalin T, Beck A, Bacquet D, Peytavit E and Lampin J F 2011 Opt. Lett.36 2044 [30] Doumbia Y, Malica T, Wolfersberger D, Panajotov K and Sciamanna M 2020 Opt. Lett.45 435 [31] Doumbia Y, Malica T, Wolfersberger D, Panajotov K and Sciamanna M 2020 Opt. Express28 30379 [32] Fatadin I, Ives D and Wicks M 2006 IEEE J. Quantum Electron.42 934 [33] Mogensen F, Olesen H and Jacobsen G 1985 IEEE J. Quantum Electron.21 784 [34] Agrawal G P 1988 J. Opt. Soc. Am. B5 147 [35] Carlson D R, Hickstein D D, Zhang W, Metcalf A J, Quinlan F, Diddams S A and Papp S B 2018 Science361 1358
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.