Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 043103    DOI: 10.1088/1674-1056/ac1f05

Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths

Yuhao Zhu(朱宇豪)1,†, Rui Jin(金锐)2, Yong Wu(吴勇)1,3,‡, and Jianguo Wang(王建国)1
1 Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Center for Free-Electron Laser Science, DESY, Hamburg 22607, Germany;
3 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  The scattering matrices of ${\rm e}+ {\rm N}^{+}$ with $J^\pi=1.5^{+}$ in discrete energy regions are calculated using the eigenchannel R-matrix method. We obtain good parameters of multichannel quantum defect theory (MQDT) that vary smoothly as the function of the energy resulting from the analytical continuation property of the scattering matrices. By employing the MQDT, all discrete energy levels for N could be calculated accurately without missing anyone. The MQDT parameters (i.e., scattering matrices) can be calibrated with the available precise spectroscopy values. In this work, the optical oscillator strengths for the transition between the ground state and Rydberg series are obtained, which provide rich data for the diagnostic analysis of plasma.
Keywords:  eigenchannel R-matrix      oscillator strengths  
Received:  14 June 2021      Revised:  15 August 2021      Accepted manuscript online:  19 August 2021
PACS: (Electronic structure and bonding characteristics) (Excitation energies and lifetimes; oscillator strengths)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2016005), the National Key Research and Development Program of China (Grant Nos. 2017YFA0403200 and 2017YFA0402300), and the CAEP Foundation (Grant No. CX2019022). We thank the Institute of Applied Physics and Computational Mathematics for the supercomputing source.
Corresponding Authors:  Yuhao Zhu, Yong Wu     E-mail:;

Cite this article: 

Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国) Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths 2022 Chin. Phys. B 31 043103

[1] Dalgarno A 1979 Advances in Atomic and Molecular Physics 15 37
[2] Kallman T R and Palmeri P 2007 Rev. Mod. Phys. 79 79
[3] Beiersdorfer and Peter 2003 Annual Review of Astronomy and Astrophysics 41 343
[4] Liu P F, Liu Y P, Zeng J L and Yuan J M 2014 Phys. Rev. A 89 042704
[5] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[6] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
[7] Petrosyan D and Nikolopoulos G M 2014 Phys. Rev. A 89 013419
[8] Gallaghar T 1994 Rydberg Atoms (Cambridge:Cambridge University Press)
[9] Ralchenko Y, Chung H K, Scott H A and Hansen S B Jr 2016 Modern Methods in Collisional-Radiative Modeling of Plasmas (Springer International Publishing)
[10] Pierrot L, Yu L, Gessman R, Laux C and Kruger C 1999 Collisional-radiative modeling of nonequilibrium effects in nitrogen plasmas 30th Plasmadynamic and Lasers Conference p. 3478
[11] Bae L J, Zastrau U, Chung H K, Bernstein A C and Cho B I 2018 Opt. Express 26 6294
[12] Bar-Shalom A, Oreg J, Goldstein W H, Shvarts D and Zigler A 1989 Phys. Rev. A 40 3183
[13] Chung H K, Cho B I, Ciricosta O, Vinko S M, Wark J S and Lee R W 2017 AIP Conference Proceedings 1811 020001
[14] Shavitt and Isaiah 1998 Molecular Physics 94 3
[15] Lindgren I 1974 J. Phys. B:Atom. Mol. Phys. 7 2441
[16] Gao X and Li J M 2014 Phys. Rev. A 89 022710
[17] Gao X, Jin R, Zeng D L, Han X Y, Yan J and Li J M 2015 Phys. Rev. A 92 052712
[18] Xiang G and Jia-Ming L 2012 Chin. Phys. Lett. 29 89
[19] Jin R, Han X Y, Gao X, Zeng D L and Li J M 2017 Scientific Reports 7 11589
[20] Zeng D L, Jin R, Gu C, Yue X F, Gao X and Li J M 2017 Phys. Rev. A 95 042508
[21] Dou L J, Jin R, Sun R, Xie L Y, Huang Z K, Li J M, Ma X W and Gao X 2020 Phys. Rev. A 101 032508
[22] Lee C M and Lu K T 1973 Phys. Rev. A 8 1241
[23] Aymar M, Greene C H and Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015
[24] Lee C M and Johnson W R 1980 Phys. Rev. A 22 979
[25] Lee C M 1974 Phys. Rev. A 10 584
[26] Lee C M 1974 Phys. Rev. A 10 1598
[27] Bell K and Berrington K 1991 J. Phys. B:Atom. Mol. Opt. Phys. 24 933
[28] Hibbert A, Dufton P and Keenan F 1985 Monthly Notices of the Royal Astronomical Society 213 721
[29] Robinson D and Hibbert A 1997 J. Phys. B:Atom. Mol. Opt. Phys. 30 4813
[30] Tayal S S and Beatty C A 1999 Phys. Rev. A 59 3622
[31] Tayal S 2006 The Astrophysical Journal Supplement Series 163 207
[32] Bi P, Liu Y Q, Tang Y J, Yang X D and Lei H L 2010 Acta Phys. Sin. 59 (in Chinese)
[33] Yu X M, Qi C H and Wang C L 2018 Chin. Phys. B 27 060101
[34] Burke P G 2011 R-matrix theory of atomic collisions (Springer Science & Business Media)
[35] Gu M F 2004 Phys. Rev. A 70 062704
[36] Norrington P H and Grant I P 1981 J. Phys. B:Atom. Mol. Phys. 14 L261
[37] Zatsarinny O, Bartschat K, Fernandez-Menchero L and Tayal S S 2019 Phys. Rev. A 99 023430
[38] Gao X, Han X Y and Li J M 2016 J. Phys. B:Atom. Mol. Opt. Phys. 49 214005
[39] Seaton M J 1983 Reports on Progress in Physics 46 167
[40] Kramida A, Yu Ralchenko, Reader J and NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8),[Online]. National Institute of Standards and Technology, Gaithersburg, MD.
[1] Relativistic calculations of 3s2 1S0–3s3p 1P1 and 3s2 1S0–3s3p 3P1,2 transition probabilities in the Mg isoelectronic sequence
Cheng Cheng(程诚), Gao Xiang(高翔), Qing Bo(青波), Zhang Xiao-Le(张小乐), and Li Jia-Ming(李家明). Chin. Phys. B, 2011, 20(3): 033103.
[2] Oscillator strengths for 22S--n2P transitions of the lithium isoelectronic sequence from Z = 11 to 20
Hu Mu-Hong(胡木宏) and Wang Zhi -Wen(王治文). Chin. Phys. B, 2009, 18(6): 2244-2249.
No Suggested Reading articles found!