Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014206    DOI: 10.1088/1674-1056/ab5783
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports

Ze-Zheng Li(李泽正)1,2, Wei-Hua Han(韩伟华)2, Zhi-Yong Li(李智勇)2
1 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China;
2 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference (MMI) couplers with any number of input and output ports. The light transformation in the MMI coupler can be considered as an optical field matrix acting on an input light column vector. We investigate the general phase principle of output light image. The complete proof of nonoverlapping-image MMI coupler's optical unitarity along with the phase analysis of matrix element is provided. Based on a two-dimensional finite-difference time-domain (2D-FDTD) simulation, the unitary transformation is obtained for a 4×4 nonoverlapping-image MMI coupler within a deviation of 4×10-2 for orthogonal invariance and 8×10-2 for transvection invariance in the C-band spectral range. A compact 1×4 splitter based on cascaded MMI coupler is proposed, showing a phase deviation less than 5.4° while maintaining a low-loss performance in C-band spectra.
Keywords:  multimode interference coupler      optical unitary transformation      integrated photonics  
Received:  25 August 2019      Revised:  23 September 2019      Accepted manuscript online: 
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200202) and the National Natural Science Foundation of China (Grant No. 61804148).
Corresponding Authors:  Zhi-Yong Li     E-mail:  lizhy@semi.ac.cn

Cite this article: 

Ze-Zheng Li(李泽正), Wei-Hua Han(韩伟华), Zhi-Yong Li(李智勇) Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports 2020 Chin. Phys. B 29 014206

[1] Heaton J M and Jenkins R M 1999 IEEE Photon. Technol. Lett. 11 212
[2] Soldano L B and Pennings E C M 1995 J. Lightwave Technol. 13 615
[3] Besse P A, Bachmann M, Nadler C and Melchior H 1995 Opt. Quantum Electron. 27 909
[4] Ulrich R and Kamiya T 1978 J. Opt. Soc. Am. A 68 583
[5] Paiam M R and MacDonald R I 1997 Appl. Opt. 36 5097
[6] Bachmann M, Besse P A and Melchior H 1994 Appl. Opt. 33 3905
[7] Soldano L B, Veerman F B, Smit M K, Verbeek B H, Dubost A H and Pennings E C M 1992 J. Lightwave Technol. 10 1843
[8] Heaton J M, Jenkins R M, Wight D R, Parker J T, Birbeck J C H and Hilton K P 1992 Appl. Phys. Lett. 61 1754
[9] Guo F, Lu D, Zhang R K, Wang H T, Wang W and Ji C 2016 Chin. Phys. Lett. 33 024203
[10] Zhou J and Gallion P 2012 J. Lightwave Technol. 30 15
[11] Mu S, Liu K, Wang S, Zhang C, Guan B and Zou D 2016 Appl. Opt. 55 1795
[12] Cao-Dung T, Manh-Cuong N, Duy-Tien L and Trung-Thanh L 2016 Opt. Switch. Netw. 22 129
[13] Mao Y Y, Sheng X Z, Wu C Q and Yu K L 2016 Chin. Phys. Lett. 33 034204
[14] Mao Y Y, Sheng X Z, Wu C Q, Zhang T Y and Wang Y 2015 Chin. Phys. Lett. 32 114204
[15] Crespo-Poveda A, Cantarero A and de Lima M M Jr 2016 J. Opt. Soc. Am. B 33 81
[16] Huang J Z, Scarmozzino R and Osgood R M 1998 IEEE Photon. Technol. Lett. 10 1292
[17] Uda R, Yamaguchi K, Takada K and Okamoto K 2018 Appl. Opt. 57 3781
[18] Dong P, Xie C and Buhl L L 2014 Opt. Express 22 2119
[19] Xue M, Pan S and Zhao Y 2014 J. Lightwave Technol. 32 3317
[20] Zheng Z, Peng M, Zhou H, Chen M, Jiang L, Tan L, Dai X and Xiang Y 2018 Opt. Commun. 411 21
[21] Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T and Zhang S G 2016 Chin. Phys. Lett. 33 114202
[22] Mak J C C, Sideris C, Jeong J, Hajimiri A and Poon J K S 2016 Opt. Lett. 41 3868
[23] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M and Vuckovic J 2015 Nat. Photon. 9 374
[24] Xu K, Liu L, Wen X, Sun W, Zhang N, Yi N, Sun S, Xiao S and Song Q 2017 Opt. Lett. 42 855
[25] Li K L, An J M, Zhang J S, Wang Y, Wang L L, Li J G, Wu Y D, Yin X J and Hu X W 2016 Chin. Phys. B 25 124209
[26] Xiao T H, Yu Y and Li Z Y 2017 Acta Phys. Sin. 66 217802 (in Chinese)
[27] Su Y L, Feng H, Hu H, Wang W, Duan T, Wang Y S, Si J H, Xie X P, Yang H N and Huang X N 2019 Chin. Phys. B 28 024216
[1] Graphene integrated photodetectors and opto-electronic devices–a review
Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛). Chin. Phys. B, 2017, 26(3): 034203.
[2] Design, fabrication and characterization of a high-performance microring resonator in silicon-on-insulator
Huang Qing-Zhong(黄庆忠), Yu Jin-Zhong(余金中), Chen Shao-Wu(陈少武), Xu Xue-Jun(徐学俊), Han Wei-Hua(韩伟华), and Fan Zhong-Chao(樊中朝) . Chin. Phys. B, 2008, 17(7): 2562-2566.
No Suggested Reading articles found!