Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106101    DOI: 10.1088/1674-1056/ab3cc2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Defects and electrical properties in Al-implanted 4H-SiC after activation annealing

Yi-Dan Tang(汤益丹)1,2, Xin-Yu Liu(刘新宇)1, Zheng-Dong Zhou(周正东)3, Yun Bai(白云)1, Cheng-Zhan Li(李诚瞻)3
1 High-Frequency High-Voltage Devices and Integrated Circuits Research and Development Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Zhuzhou CRRC Times Electric Co., Ltd, Zhuzhou 412001, China
Abstract  The defects and electrical properties in Al-implanted 4H-SiC after activation annealing (1600 ℃-1800 ℃) are investigated. High temperature annealing can reduce the ion implantation-induced damage effectively, but it may induce extended defects as well, which are investigated by using Rutherford backscattering spectroscopy (RBS/C), secondary ion mass spectroscopy (SIMS), and transmission electron microscopy (TEM) analyses. According to the ratio of the channeled intensity to the random intensity in the region just below the surface scattering peak (Xmin) and RBS/C analysis results, the ion implantation-induced surface damages can be effectively reduced by annealing at temperatures higher than 1700 ℃, while the defects near the bottom of the ion-implanted layer cannot be completely annealed out by high temperature and long time annealing process, which is also demonstrated by SIMS and TEM analyses. Referring to the defect model and TEM analyses, an optimized annealing condition can be achieved through balancing the generation and elimination of carbon vacancies in the ion implanted layers. Furthermore, the electrical and surface properties are also analyzed, and the hole concentration, mobility, and resistivity are obtained through the Hall effect. The optimized activation annealing conditions of 1800 ℃/5 min are achieved, under which the lower defects and acceptable electrical properties are obtained.
Keywords:  Al-implanted 4H-SiC      activation annealing      extended defects      carbon vacancies  
Received:  28 June 2019      Revised:  16 August 2019      Accepted manuscript online: 
PACS:  61.72.U- (Doping and impurity implantation)  
  61.80.Jh (Ion radiation effects)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0100601).
Corresponding Authors:  Yi-Dan Tang, Xin-Yu Liu     E-mail:  tangyidan@ime.ac.cn;xyliu@ime.ac.cn

Cite this article: 

Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻) Defects and electrical properties in Al-implanted 4H-SiC after activation annealing 2019 Chin. Phys. B 28 106101

[1] Fanny D 2002 Junction Barrier Schottky Rectifiers Silicon Carbide (Sweden: KTH Royal Institute of Technology, Stockholm) pp. 16-25
[2] Baliga B J 2005 Silicon Carbide Power Devices (USA: World Scientific Publishing Co. Pte. Ltd) pp. 104-115
[3] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (Germany: Springer Science + Business Media LLC) pp. 168-197
[4] Roccaforte F, Giannazzo F and Raineri V 2010 J. Phys. D: Appl. Phys. 43 223001
[5] Ren N and Sheng K 2014 IEEE Trans. Electron Dev. 61 4158
[6] Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Bai Y, Xu H Y, Wu Y D and Liu X Y 2014 Chin. Phys. B 23 127302
[7] Wang T T, Liu G W, Huang Z K, et al. 2018 Chin. Phys. B 27 046101
[8] Tang Y D, Ge L, Gu H, Bai Y, Luo Y F, Li C Z and Liu X Y 2019 Microelectron. Reliab. 102 113451
[9] Capano M A, Cooper J A, Jr and Melloch M R 2000 J. Appl. Phys. 87 8773
[10] Heera V, Panknin D and Skorupa W 2001 Appl. Surf. Sci. 184 307
[11] Kimoto T, Miyamoto N, Schoöner A, Saitoh A and Matsunami H 2002 J. Appl. Phys. 91 4242
[12] Wang S G, Zhang Y, Zhang Y M and Zhang Y M 2010 Chin. Phys. B 19 017204
[13] Hui S, Liu X C, Huang W, Xiong Z, Yang J H and Shi E W 2012 Chin. Phys. B 21 096801
[14] Asada S, Okuda T, Kimoto T and Suda J 2016 Appl. Phys. Express 9 041301
[15] Nagano M, Tsuchida H, Suzuki T, Hatakeyama T, Senzaki J and Fukuda K 2010 J. Appl. Phys. 108 013511
[16] Hu S X, Han P D, Gao L P, et al. 2012 Chin. Phys. Lett. 29 046101
[17] Parisini A and Nipoti R 2013 J. Appl. Phys. 114 243703
[18] Parisini A, Gorni M, Nath A, Belsito L, Rao V and Nipoti R 2015 J. Appl. Phys. 118 035101
[19] Ayedh H M, Bobal V, Nipoti R, Hallen A and Svensson B G 2014 J. Appl. Phys. 115 012005
[20] Nipoti R, Parisini A, Sozzi G, Puzzanghera M, Parisini A and Carnera A 2015 J. Appl. Phys. 118 175701
[21] Ayedh H M, Hallen A and Svensson B G 2015 J. Appl. Phys. 118 175701
[22] Ayedh H M, Nipoti R, Hallen A and Svensson B G 2015 Appl. Phys. Lett. 107 252102
[23] Ayedh H M, Puzzanghera M, Svensson B G and Nipoti R 2017 Mater. Sci. Forum 897 279
[24] Thom L, Velisa G, Miro S, Debelle A, Garrido F, Sattonnay G, Mylonas S, Trocellier P and Serruys Y 2015 J. Appl. Phys. 117 105901
[25] Weisse J, Hauck M, Sledziewski T, Tschiesche M, Krieger M, Bauer A, Mitlehner H, Frey L and Erlbacher T 2018 Mater. Sci. Forum 924 184
[26] Nipoti R, Carnera A, Alfieri G and Kranz L 2018 Mater. Sci. Forum 924 333
[1] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
No Suggested Reading articles found!