Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110301    DOI: 10.1088/1674-1056/26/11/110301
GENERAL   Next  

Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy

H Farooq1, M Sarfraz1, Z Iqbal1, G Abbas1, H A Shah2
1. Department of Physics, Government College University, Lahore 54000, Pakistan;
2. Government College University, Lahore 54000, Pakistan
Abstract  The dispersion relations of parallel propagating modes (Langmuir mode, right and left handed circular polarized waves) in the weak magnetic field limit|ω-k·v|>>Ω are considered for ultra-relativistic arbitrary degenerate electron plasma. The results are presented in terms of moments of Fermi-Dirac distribution. The increase in the electron equilibrium number density from negative large (weakly degenerate) to positive large (highly degenerate) values of μ/Te is observed (where μ is the electron chemical potential and Te is the electron thermal energy). As a result, shifting of the cutoff points in all the real dispersion branches towards the higher values and increasing in the band gap between unmagnetized longitudinal and transverse modes in k-space are examined. Also, the suppression of the weak magnetic field effects in weakly magnetized right handed and left handed circular polarized waves and a decrease in the longitudinal and transverse screening effects are observed in the graphical patterns due to an increase in the equilibrium number density.
Keywords:  degenerate Fermi gases      relativistic plasmas      electromagnetic waves  
Received:  12 May 2017      Revised:  30 September 2017      Accepted manuscript online: 
PACS:  03.75.Ss (Degenerate Fermi gases)  
  52.27.Ny (Relativistic plasmas)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
Corresponding Authors:  G Abbas     E-mail:  gohar.abbas@gcu.edu.pk

Cite this article: 

H Farooq, M Sarfraz, Z Iqbal, G Abbas, H A Shah Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy 2017 Chin. Phys. B 26 110301

[1] Bellac M L 1996 Thermal Field Theory(Cambridge:Cambridge University Press)
[2] Thoma M H 1995 Quark-Gluon Plasma 2(New York:Hwa R C, Ed.)(World Scientific)
[3] Bolton S J 2002 Nature 415 987
[4] Baker D N 2014 Nature 515 531
[5] Shen B and Meyer-ter-Vehn J 2001 Phys. Rev. E 65 016405
[6] Silin V P 1960 J. Exptl. Theoret. Phys. 38 1577
[7] Linhard J 1954 Kongl. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28 8
[8] Laing E W and Diver D A 2013 Plasma Phys. Control. Fusion 55 065006
[9] Shah A, Haque Q and Mahmood S 2011 Astrophys. Space Sci. 335 529
[10] Verdon M W and Melrose D B 2011 Phys. Rev. E 83 056407
[11] Synge J L 1957 The Relativistic Gas(Amsterdam:North-Holland)
[12] Chandrasekhar S 1931 Astrophys. J. 74 81
[13] Mamun A A and Shukla P K 2010 Phys. Plasmas 17 104504
[14] Masood W and Eliasson B 2011 Phys. Plasmas 18 034503
[15] Rahman A U, Ali S, Mushtaq A and Qamar A 2013 J. Plasma Phys. 79 817
[16] Shukla P K and Eliasson B 2011 Rev. Mod. Phys. 83 885
[17] Maafa N 1993 Phys. Scripta 48 351
[18] Eliasson B and Shukla P K 2008 Phys. Scr. 78 025503
[19] Melrose D B and Mushtaq A 2010 Phys. Rev. E 82 056402
[20] Melrose D B and Hayes L M 1984 Aust. J. Phys. 37 639
[21] Jancovici B 1962 Nuovo Cimento 25 428
[22] Tsytovich V N 1961 Sov. Phys. JETP 13 1249
[23] Abbas G, Murtaza G and Shah H A 2007 Phys. Scr. 76 649
[24] Abbas G, Murtaza G and Kingham R J 2010 Phys. Plasmas 17 072105
[25] Abbas G, Bashir M F, Ali M and Murtaza G 2012 Phys. Plasmas 19 032103
[26] Abbas G, Bashir M F and Murtaza G 2012 Phys. Plasmas 19 072121
[27] Abbas G, Bashir M F and Murtaza G 2011 Phys. Plasmas 18 102115
[28] Abbas G, Sarfraz M and Shah H A 2014 Phys. Plasmas 21 092108
[1] Propagation characteristics of power line harmonic radiation in the ionosphere
Wu Jing (吴静), Fu Jing-Jing (付静静), Zhang Chong (张翀). Chin. Phys. B, 2014, 23(3): 034102.
[2] Prediction and experimental measurement of electromagnetic thrust generated by a microwave thruster system
Yang Juan (杨涓), Wang Yu-Quan (王与权), Ma Yan-Jie (马艳杰), Li Peng-Fei (李鹏飞), Yang Le (杨乐), Wang Yang (王阳), He Guo-Qiang (何国强). Chin. Phys. B, 2013, 22(5): 050301.
[3] Quantum mechanical description of waveguides
Wang Zhi-Yong (王智勇), Xiong Cai-Dong(熊彩东), He Bing(何 兵). Chin. Phys. B, 2008, 17(11): 3985-3990.
[4] On the properties of electromagnetic waves propagating inside moving dielectric media
He Qi-Cai (贺奇才), Xu Sheng-Hui (徐生辉), Li Ping-Yang (李平阳), Wei Dong-Ji (魏冬季), Ling Yang-Hao (凌养浩), Chen Di-Hu (陈弟虎). Chin. Phys. B, 2004, 13(5): 682-685.
No Suggested Reading articles found!