Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024218    DOI: 10.1088/1674-1056/24/2/024218
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar

Zhao Ruo-Can (赵若灿)a, Xia Hai-Yun (夏海云)a b, Dou Xian-Kang (窦贤康)a b, Sun Dong-Song (孙东松)a b, Han Yu-Li (韩於利)a, Shangguan Ming-Jia (上官明佳)a, Guo Jie (郭洁)a, Shu Zhi-Feng (舒志峰)a b
a CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China;
b Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract  A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground. Before the inversion of the Doppler shift due to wind, the Rayleigh response function should be calculated, which is a convolution of the laser spectrum, Rayleigh backscattering function, and the transmission function of the Fabry-Perot interferometer used as the frequency discriminator in the lidar. An analysis of the influence of the temperature on the accuracy of the line-of-sight winds shows that real-time temperature profiles are needed because the bandwidth of the Rayleigh backscattering function is temperature-dependent. An integration method is employed in the inversion of the temperature, where the convergence of this method and the high signal-to-noise ratio below 60 km ensure the accuracy and precision of the temperature profiles inverted. Then, real-time and on-site temperature profiles are applied to correct the wind instead of using temperature profiles from a numerical prediction system or atmosphere model. The corrected wind profiles show satisfactory agreement with the wind profiles acquired from radiosondes, proving the reliability of the method.
Keywords:  Rayleigh Doppler lidar      temperature observation      wind observation      stratosphere and lower mesosphere  
Received:  21 April 2014      Revised:  15 July 2014      Accepted manuscript online: 
PACS:  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41174130, 41174131, 41274151, and 41304123).
Corresponding Authors:  Dou Xian-Kang     E-mail:  dou@ustc.edu.cn

Cite this article: 

Zhao Ruo-Can (赵若灿), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Sun Dong-Song (孙东松), Han Yu-Li (韩於利), Shangguan Ming-Jia (上官明佳), Guo Jie (郭洁), Shu Zhi-Feng (舒志峰) Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar 2015 Chin. Phys. B 24 024218

[1] Müllemann A and Lübken F J 2005 Adv. Space Res. 35 1890
[2] Hays P, Dehring M, Fisk L, Tchoryk P, Dors I, Ryan J, Wang J X, Hardesty M, Gentry B and Hovis F 2005 Space-based Doppler Winds Lidar: a Vital National Need
[3] Stoffelen A, Pailleux J, Källen E, Vaughan J M, Isaksen L, Flamant P, Wergen W, Andersson E, Schyberg H, Culoma A, Meynart R, Endemann M and Ingmann P 2005 Bull. Am. Meteorol. Soc. 86 73
[4] Reitebuch O, Lemmerz C, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F and Chaloupy M 2009 J. Atmos. Ocean. Technol. 26 2501
[5] Paffrath U, Lemmerz C, Reitebuch O, Witschas B, Nikolaus I and Freudenthaler V 2009 J. Atmos. Ocean. Technol. 26 2516
[6] Hall F F, Huffaker R M, Hardesty R M, Jackson M, Lawrence T R, Post M, Richter R A and Weber B F 1984 Appl. Opt. 23 2503
[7] Huffaker R M and Hardesty R M 1996 Proc. IEEE 84 181
[8] Chanin M L, Garnier A, Hauchecorne A and Porteneuve J 1989 Geophys. Res. Lett. 16 1273
[9] Garnier A and Chanin M L 1992 Appl. Phys. B 55 35
[10] Korb C L, Gentry B M, Li S X and Flesia C 1998 Appl. Opt. 37 3097
[11] Flesia C and Korb C L 1999 Appl. Opt. 38 432
[12] Tang L, Wang C R, Wu H B and Dong J H 2012 Chin. Phys. Lett. 29 014213
[13] Irgang T D, Hays P B and Skinner W R 2002 Appl. Opt. 41 1145
[14] Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L and Geng L J 2013 Chin. Phys. B 22 024211
[15] Tang L, Wang Y T, Shu Z F, Dong J H, Wang G C, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S and Cha H 2010 Chin. Phys. Lett. 27 114207
[16] Xia H Y, Dou X K, Shangguan M J, Zhao R C, Sun D S, Wang C, Qiu J W, Shu Z F, Xue X H, Han Y L and Han Y 2014 Opt. Express 22 21775
[17] Liu Z S, Wu D, Liu J T, Zhang K L, Chen W B, Song X Q, Hair J W and She C Y 2002 Appl. Opt. 41 7079
[18] McKay J A 2002 Appl. Opt. 41 1760
[19] Bruneau D, Garnier A, Hertzog A and Porteneuve J 2004 Appl. Opt. 43 173
[20] Cézard N, Dolfi-Bouteyre A, Huignard J P and Flamant P H 2009 Appl. Opt. 48 2321
[21] Xia H Y, Sun D S, Yang Y H, Shen F H, Dong J J and Kobayashi T 2007 Appl. Opt. 46 7120
[22] Pan X, Shneider M N and Miles R B 2002 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, June, 2002, St. Louis, USA
[23] Dabas A, Denneulin M L, Flamant P, Loth C, Garnier A and Dolfi-Bouteyre A 2008 Tellus A 60 206
[24] Xia H, Dou X K, Sun D S, Shu Z F, Xue X H, Han Y, Hu D D, Han Y L and Cheng T D 2012 Opt. Express 20 15286
[25] Shibata T, Kobuchi M and Maeda M 1986 Appl. Opt. 25 685
[26] Fleming E L, Chandra S, Barnett J J and Corney M 1990 Adv. Space Res. 10 11
[27] Leblanc T, McDermid I S, Hauchecorne A and Keckhu P 1998 J. Geophys. Res. Atmos. 103 6177
[28] Turco R P, Whitten R C and Toon O B 1982 Rev. Geophys. 20 233
[29] Fernald F G 1984 Appl. Opt. 23 652
[30] Li T, Fang X, Liu W, Gu S Y and Dou X K 2012 Appl. Opt. 51 5401
[1] Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination
Shangguan Ming-Jia (上官明佳), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Wang Chong (王冲), Qiu Jia-Wei (裘家伟), Zhang Yun-Peng (张云鹏), Shu Zhi-Feng (舒志峰), Xue Xiang-Hui (薛向辉). Chin. Phys. B, 2015, 24(9): 094212.
No Suggested Reading articles found!