ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar |
Zhao Ruo-Can (赵若灿)a, Xia Hai-Yun (夏海云)a b, Dou Xian-Kang (窦贤康)a b, Sun Dong-Song (孙东松)a b, Han Yu-Li (韩於利)a, Shangguan Ming-Jia (上官明佳)a, Guo Jie (郭洁)a, Shu Zhi-Feng (舒志峰)a b |
a CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China; b Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground. Before the inversion of the Doppler shift due to wind, the Rayleigh response function should be calculated, which is a convolution of the laser spectrum, Rayleigh backscattering function, and the transmission function of the Fabry-Perot interferometer used as the frequency discriminator in the lidar. An analysis of the influence of the temperature on the accuracy of the line-of-sight winds shows that real-time temperature profiles are needed because the bandwidth of the Rayleigh backscattering function is temperature-dependent. An integration method is employed in the inversion of the temperature, where the convergence of this method and the high signal-to-noise ratio below 60 km ensure the accuracy and precision of the temperature profiles inverted. Then, real-time and on-site temperature profiles are applied to correct the wind instead of using temperature profiles from a numerical prediction system or atmosphere model. The corrected wind profiles show satisfactory agreement with the wind profiles acquired from radiosondes, proving the reliability of the method.
|
Received: 21 April 2014
Revised: 15 July 2014
Accepted manuscript online:
|
PACS:
|
42.68.Wt
|
(Remote sensing; LIDAR and adaptive systems)
|
|
42.79.Qx
|
(Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41174130, 41174131, 41274151, and 41304123). |
Corresponding Authors:
Dou Xian-Kang
E-mail: dou@ustc.edu.cn
|
Cite this article:
Zhao Ruo-Can (赵若灿), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Sun Dong-Song (孙东松), Han Yu-Li (韩於利), Shangguan Ming-Jia (上官明佳), Guo Jie (郭洁), Shu Zhi-Feng (舒志峰) Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar 2015 Chin. Phys. B 24 024218
|
[1] |
Müllemann A and Lübken F J 2005 Adv. Space Res. 35 1890
|
[2] |
Hays P, Dehring M, Fisk L, Tchoryk P, Dors I, Ryan J, Wang J X, Hardesty M, Gentry B and Hovis F 2005 Space-based Doppler Winds Lidar: a Vital National Need
|
[3] |
Stoffelen A, Pailleux J, Källen E, Vaughan J M, Isaksen L, Flamant P, Wergen W, Andersson E, Schyberg H, Culoma A, Meynart R, Endemann M and Ingmann P 2005 Bull. Am. Meteorol. Soc. 86 73
|
[4] |
Reitebuch O, Lemmerz C, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F and Chaloupy M 2009 J. Atmos. Ocean. Technol. 26 2501
|
[5] |
Paffrath U, Lemmerz C, Reitebuch O, Witschas B, Nikolaus I and Freudenthaler V 2009 J. Atmos. Ocean. Technol. 26 2516
|
[6] |
Hall F F, Huffaker R M, Hardesty R M, Jackson M, Lawrence T R, Post M, Richter R A and Weber B F 1984 Appl. Opt. 23 2503
|
[7] |
Huffaker R M and Hardesty R M 1996 Proc. IEEE 84 181
|
[8] |
Chanin M L, Garnier A, Hauchecorne A and Porteneuve J 1989 Geophys. Res. Lett. 16 1273
|
[9] |
Garnier A and Chanin M L 1992 Appl. Phys. B 55 35
|
[10] |
Korb C L, Gentry B M, Li S X and Flesia C 1998 Appl. Opt. 37 3097
|
[11] |
Flesia C and Korb C L 1999 Appl. Opt. 38 432
|
[12] |
Tang L, Wang C R, Wu H B and Dong J H 2012 Chin. Phys. Lett. 29 014213
|
[13] |
Irgang T D, Hays P B and Skinner W R 2002 Appl. Opt. 41 1145
|
[14] |
Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L and Geng L J 2013 Chin. Phys. B 22 024211
|
[15] |
Tang L, Wang Y T, Shu Z F, Dong J H, Wang G C, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S and Cha H 2010 Chin. Phys. Lett. 27 114207
|
[16] |
Xia H Y, Dou X K, Shangguan M J, Zhao R C, Sun D S, Wang C, Qiu J W, Shu Z F, Xue X H, Han Y L and Han Y 2014 Opt. Express 22 21775
|
[17] |
Liu Z S, Wu D, Liu J T, Zhang K L, Chen W B, Song X Q, Hair J W and She C Y 2002 Appl. Opt. 41 7079
|
[18] |
McKay J A 2002 Appl. Opt. 41 1760
|
[19] |
Bruneau D, Garnier A, Hertzog A and Porteneuve J 2004 Appl. Opt. 43 173
|
[20] |
Cézard N, Dolfi-Bouteyre A, Huignard J P and Flamant P H 2009 Appl. Opt. 48 2321
|
[21] |
Xia H Y, Sun D S, Yang Y H, Shen F H, Dong J J and Kobayashi T 2007 Appl. Opt. 46 7120
|
[22] |
Pan X, Shneider M N and Miles R B 2002 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, June, 2002, St. Louis, USA
|
[23] |
Dabas A, Denneulin M L, Flamant P, Loth C, Garnier A and Dolfi-Bouteyre A 2008 Tellus A 60 206
|
[24] |
Xia H, Dou X K, Sun D S, Shu Z F, Xue X H, Han Y, Hu D D, Han Y L and Cheng T D 2012 Opt. Express 20 15286
|
[25] |
Shibata T, Kobuchi M and Maeda M 1986 Appl. Opt. 25 685
|
[26] |
Fleming E L, Chandra S, Barnett J J and Corney M 1990 Adv. Space Res. 10 11
|
[27] |
Leblanc T, McDermid I S, Hauchecorne A and Keckhu P 1998 J. Geophys. Res. Atmos. 103 6177
|
[28] |
Turco R P, Whitten R C and Toon O B 1982 Rev. Geophys. 20 233
|
[29] |
Fernald F G 1984 Appl. Opt. 23 652
|
[30] |
Li T, Fang X, Liu W, Gu S Y and Dou X K 2012 Appl. Opt. 51 5401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|