Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118701    DOI: 10.1088/1674-1056/23/11/118701
SPECIAL TOPIC—Non-equilibrium phenomena in soft matters Prev   Next  

Near equilibrium dynamics and one-dimensional spatial-temporal structures of polar active liquid crystals

Yang Xiao-Gang (杨小刚)a, M. Gregory Forestb, Wang Qi (王奇)a c d
a School of Mathematical Sciences, Nankai University, Tianjin 300071, China;
b Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA;
c Department of Mathematics, Interdisciplinary Mathematics Institute and NanoCenter at USC, University of South Carolina, Columbia, SC 29028, USA;
d Beijing Computational Science Research Center, Beijing 100083, China
Abstract  

We systematically explore near equilibrium, flow-driven, and flow-activity coupled dynamics of polar active liquid crystals using a continuum model. Firstly, we re-derive the hydrodynamic model to ensure the thermodynamic laws are obeyed and elastic stresses and forces are consistently accounted. We then carry out a linear stability analysis about constant steady states to study near equilibrium dynamics around the steady states, revealing long-wave instability inherent in this model system and how active parameters in the model affect the instability. We then study model predictions for onedimensional (1D) spatial-temporal structures of active liquid crystals in a channel subject to physical boundary conditions. We discuss the model prediction in two selected regimes, one is the viscous stress dominated regime, also known as the flow-driven regime, while the other is the full regime, in which all active mechanisms are included. In the viscous stress dominated regime, the polarity vector is driven by the prescribed flow field. Dynamics depend sensitively on the physical boundary condition and the type of the driven flow field. Bulk-dominated temporal periodic states and spatially homogeneous states are possible under weak anchoring conditions while spatially inhomogeneous states exist under strong anchoring conditions. In the full model, flow-orientation interaction generates a host of planar as well as out-of-plane spatial-temporal structures related to the spontaneous flows due to the molecular self-propelled motion. These results provide contact with the recent literature on active nematic suspensions. In addition, symmetry breaking patterns emerge as the additional active viscous stress due to the polarity vector is included in the force balance. The inertia effect is found to limit the long-time survival of spatial structures to those with small wave numbers, i.e., an asymptotic coarsening to long wave structures. A rich set of mechanisms for generating and limiting the flow structures as well as the spatial-temporal structures predicted by the model are displayed.

Keywords:  active liquid crystals      active particles      spatial-temporal structures      spontaneous flows  
Received:  29 May 2014      Revised:  24 September 2014      Accepted manuscript online: 
PACS:  87.10.Ed (Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)  
  87.23.Cc (Population dynamics and ecological pattern formation)  
  87.23.Kg (Dynamics of evolution)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. DMS-1200487, DMR-1122483, and NIH 2R01GM078994-05A1), the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-12-1-0178), and the Army Research Office (Grant Nos. ARO-12-60317-MS and SC EPSCoR GEAR (CI and CRP)).

Corresponding Authors:  Yang Xiao-Gang, M. Gregory Forest, Wang Qi     E-mail:  nkyxg@mail.nankai.edu.cn;forest@unc.edu;qwang@math.sc.edu

Cite this article: 

Yang Xiao-Gang (杨小刚), M. Gregory Forest, Wang Qi (王奇) Near equilibrium dynamics and one-dimensional spatial-temporal structures of polar active liquid crystals 2014 Chin. Phys. B 23 118701

[1] Toner J and Tu Y 1995 Phys. Rev. Lett. 75 4326
[2] Toner J and Tu Y 1998 Phys. Rev. E 58 4828
[3] Ramaswamy S, Simha R A and Toner J 2003 Europhys. Lett. 62 196
[4] Narayan V, Ramaswamy S and Menon N 2007 Science 317 105
[5] Koch A J and Meinhardt H 1994 Rev. Mod. Phys. 66 1481
[6] Budrene E O and Berg H C 1991 Nature 349 630
[7] Budrene E O and Berg H C 1995 Nature 376 49
[8] Liverpool T B 2003 Phys. Rev. E 67 031909
[9] Matsushita M 1997 Bacteria as Multicellular Organisms (New York, Oxford: Oxford University Press)
[10] James DM2002 An Introduction To Mathematical Biology (New York: Springer-Verlag)
[11] Timothy R K, Walter F P, Thomas E M and Sen A A 2005 Chem. Int. Ed. 117 754
[12] Dombrowski C, Cisneros L, Chatkaew S, Goldstein R E and Kessler J O 2004 Phys. Rev. Lett. 93 098103
[13] Kruse K, Joanny J F, Jülicher F, Prost J and Sekimoto K 2004 Phys. Rev. Lett. 92 078101
[14] Kruse K, Joanny J F, Jülicher F, Prost J and Sekimoto K 2005 Eur. Phys. J. E 16 516
[15] Joanny J F, Jülicher F, Kruse K and Prost J 2007 New J. Phys. 9 422
[16] Wang Q, Yang X, David A, Elston T, Jacobson K, Maria M and Forest M G 2012 Computational and Modeling Strategies for Cell Motility: Bacteria as Multicellular Organisms (New York: Springer)
[17] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323
[18] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
[19] Simha R A and Ramaswamy S 2002 Phys. Rev. Lett. 89 058101
[20] De-Gennes P G and Prost J 1993 The Physics of Liquid Crystals (Oxford: Oxford Science Publications)
[21] Gruler H, Dewald U and Eberhardt M 1999 Eur. Phys. J. B 11 187
[22] Kemkemer R, Kling D, Kaufmann D and Gruler H 2000 Eur. Phys. J. E 1 215
[23] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[24] Baskaran A and Marchetti M C 2012 Eur. Phys. J. E 35 95
[25] Saintillan D and Shelley M J 2008 Phys. Rev. Lett. 100 178103
[26] Liverpool T B and Marchetti M C 2006 Phys. Rev. Lett. 97 268101
[27] Baskaran A and Marchetti M C 2008 Phys. Rev. Lett. 101 268101
[28] Baskaran A and Marchetti M C 2009 Proc. Natl. Acad. Sci. USA 106 15567
[29] Petitjean L, Reffay M, Grasland-Mongrain E, Poujade M, Ladoux B, Buguin A and Silberzan P 2010 Biophys. J. 98 1790
[30] Peruani F, Starruss J, Jakovljevic V, Anderseng L S, Deutsch A and Bär M 2012 Phys. Rev. Lett. 108 098102
[31] Mishra S, Baskaran A and MarchettiMC 2010 Phys. Rev. E 81 061916
[32] Voituriez R, Joanny J F and Prost J 2005 Europhys. Lett. 70 404
[33] Saintillan D and Shelley M J 2007 Phys. Rev. Lett. 99 058102
[34] Saintillan D and Shelley M J 2008 Phys. Fluids 20 123304
[35] Hohenegger C and Shelley M J 2010 Phys. Rev. E 81 046311
[36] Kanevsky A, ShelleyMJ and Tornberg A K 2010 J. Comput. Phys. 229 958
[37] Baskaran A and Marchetti M C 2010 J. Stat. Mech. 2010 04019
[38] Liverpool T B, Marchetti M C, Joanny J F and Prost J 2010 Europhys. Lett. 85 18007
[39] Gopinath A, Hagan M F, Marchetti M C and Baskaran A 2012 Phys. Rev. E 85 061903
[40] Forest M G, Zhou R and Wang Q 2013 Soft Matter 21 5207
[41] Baskaran A and Marchetti M C 2008 Phys. Rev. E 77 011920
[42] Rey A D 2007 Soft Matter 3 1934
[43] Ae-Gyeong C and Rey A D 2001 Phys. Rev. E 64 041701
[44] Justin S B, Frank J and StephanWG 2011 Phys. Rev. Lett. 106 028103
[45] Giomi L and Marchetti M C 2012 Soft Matter 8 129
[46] Edwards S A and Yeomans J M 2009 Europhys. Lett. 85 18008
[47] Elgeti J, Cates M E and Marenduzzo D 2011 Soft Matter 7 3177
[48] Giomi L, Liverpool T B and Marchetti M C 2010 Phys. Rev. E 81 051908
[49] Giomi L, Marchetti M C and Liverpool T B 2008 Phys. Rev. Lett. 101 198101
[50] Forest M G, Phuworawong P, Wang Q and Zhou R 2014 Philosophical Transactions of the Royal Society A (in press)
[51] Martin P C, Parodi O and Pershan P S 1972 Phys. Rev. A 6 2401
[52] Leslie F M 1979 Theory of Flow Phenomena in Liquid Crystals (New York: Academic Press)
[53] Chandrasekhar S 1992 Liquid Crystals (Cambridge: Cambridge University Press)
[54] Liverpool T B and Marchetti M C 2008 Hydrodynamics and Rheology of Active Polar Filaments (New York: Springer) p. 177
[55] Forest M G,Wang Q and Bechtel S E 1997 Physica D: Nonlinear Phenomena 94 527
[56] Yang X and Wang Q 2014 (Preprint)
[1] Collective motion of polar active particles on a sphere
Yi Chen(陈奕), Jun Huang(黄竣), Fan-Hua Meng(孟繁华), Teng-Chao Li(李腾超), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2021, 30(10): 100510.
[2] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[3] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
No Suggested Reading articles found!