Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040402    DOI: 10.1088/1674-1056/23/4/040402
GENERAL Prev   Next  

Classical interpretations of relativistic precessions

Sankar Hajra
Indian Physical Society, 2A & 2B Raja S. C. Mallick Road, Calcutta-700 032, India
Abstract  Relativists have exposed various precessions and developed ingenious experiments to verify those phenomena with extreme precisions. The Gravity Probe B mission was designed to study the precessions of the gyroscopes rotating round the Earth in a nearly circular near-Earth polar orbit to demonstrate the geodetic effect and the Lense-Thirring effect as predicted by the general relativity theory. In this paper, we show in a very simple and novel analysis that the precession of the perihelion of Mercury, the Thomas precession, and the precession data (on the de Sitter and Lense-Thirring precessions) collected from the Gravity Probe B mission could easily be explained from classical physics, too.
Keywords:  Thomas precession      precession of planetary orbits      de Sitter precession      Lense-Thirring precession  
Received:  21 July 2013      Revised:  07 September 2013      Accepted manuscript online: 
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  45.20.D- (Newtonian mechanics)  
Corresponding Authors:  Sankar Hajra     E-mail:  sankarhajra@yahoo.com
About author:  04.80.Cc; 03.50.De; 45.20.D-

Cite this article: 

Sankar Hajra Classical interpretations of relativistic precessions 2014 Chin. Phys. B 23 040402

[1] Anatoli Andrei Vankov 2013 Einstein's Paper: "Explanation of the Perihelion of Motion of Mercury from General Relativity Theory (Internet book with the originals and translations of the Einstein's 1915 paper and Schwarzschild letter to Einstein) pp. 1-34 http://www.gsjournal.net/old/eeuro/vankov.pdf viewed on 28-01-2014
[2] de Sitter W 1916 Mon. Not. R. Astron. Soc. 77 155
[3] Mashhoom Bahram, Hehl Friedrich W and Theiss Dietmar S 1984 Gen. Relat. Grav. 16 712
[4] Thomas L H 1926 Nature 11 514
[5] Everitt C W F, DeBra D B, Parkinson B W, Turneaure J P, Conklin J W, Heifetz M I, Keiser G M, Silbergleit A S, Holmes T, Kolodziejczak J, Al-Meshari M, Mester J C, Muhlfelder B, Solomonik V G, Stahl K, Worden P W Jr, Bencze W, Buchman S, Clarke B, Al-Jadaan A, Al-Jibreen H, Li J, Lipa J A, Lockhart J M, Al-Suwaidan B, Taber M and Wang S 2011 Phys. Rev. Lett. 106 221101-4 (Table II, Results)
[6] Clifford M Will 2011 Physics 4 43
[7] Heaviside O 1888 Electrician Dec. 7 148
[8] Heaviside O 1889 Philo. Mag. Series 5 27 324
[9] Searle G F C 1897 Philo. Mag. Series 5 44 329
[10] Hajra Sankar 2012 J. Mod. Phys. 3 187
[11] Hajra Sankar 2012 J. Mod. Phys. 10 187
[12] Lorentz H A 1951 The Theory of Electron (New York : Dover Publications Inc.) pp. 38-39
[13] Xu G O and Xu M J 2005 Chin. Phys. Lett. 22 1303
[14] Xu G O, Xu M J and Yang Y T 2005 Chin. Phys. Lett. 22 1573
[15] Guo Y X, Chen X W and Luo S K 2007 Chin. Phys. 16 3176
[16] Mei F X, Luo S K and Cai J L 2008 Chin. Phys. B 17 3170
[17] Iorio L 2008 Advances in Astronomy 2008 id 268647 arxiv: 0710.2610
[18] Pitjeva E V and Pitjev N P 2013 Mon. Not. R. Astro. Soc. 432 3431
[19] Biswas Abhijit and Mani Krishnan R S 2008 Central European Journal of Physics 6 754
[20] Holstein Barry L 2001 Am. J. Phys. 69 1248
[1] Erratum:Classical interpretations of relativistic precessions
Sankar Hajra. Chin. Phys. B, 2014, 23(9): 090401.
No Suggested Reading articles found!