Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110204    DOI: 10.1088/1674-1056/22/11/110204
GENERAL Prev   Next  

Finite-time consensus for leader-following multi-agent systems over switching network topologies

Sun Feng-Lan (孙凤兰), Zhu Wei (朱伟)
Research Center of System Theory and Application, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle’s invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader-following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.
Keywords:  finite-time consensus      leader-following multi-agent system  
Received:  07 January 2013      Revised:  27 March 2013      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  05.45.Xt (Synchronization; coupled oscillators)  
  89.70.-a (Information and communication theory)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60834002, 60873021, and 61004042), the Youth Science Research Project of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-82), and the Doctor Start-up Foundation of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-23).
Corresponding Authors:  Sun Feng-Lan     E-mail:  sunfl@cqupt.edu.cn

Cite this article: 

Sun Feng-Lan (孙凤兰), Zhu Wei (朱伟) Finite-time consensus for leader-following multi-agent systems over switching network topologies 2013 Chin. Phys. B 22 110204

[1] Amritkar R and Jalan S 2003 Physica A 321 220
[2] Su H, Wang X and Lin Z 2009 IEEE Trans. Autom. Control 54 293
[3] Lin P and Jia Y 2008 Physica A 387 303
[4] Liu C L and Liu F 2011 Acta Phys. Sin. 66 030202 (in Chinese)
[5] Zhang Q, Chen S H and Guo W L 2010 Chin. Phys. Lett. 27 100501
[6] Wu Z H, Peng L, Xie L B and Wen J W 2012 Chin. Phys. B 21 128902
[7] Olfati-Saber R and Murray R M 2004 IEEE Trans. Autom. Control 49 1520
[8] Li J Z 2011 Chin. Phys. B 20 020512
[9] Zhang X D and Li Y J 2012 Chin. Phys. B 21 030205
[10] Fang H J, Wu Z H and Wei J 2012 IEEE Trans. Autom. Control 57 249
[11] Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 048901
[12] Zhu S Y, Chen C L and Guan X P 2013 Chin. Phys. B 22 018901
[13] Ji L H and Liao X F 2012 Acta Phys. Sin. 61 150202 (in Chinese)
[14] Sun Y Z, Li W and Ruan J 2013 Chin. Phys. B 22 030510
[15] Ren W and Beard R W 2005 IEEE Trans. Autom. Control 50 655
[16] Sun Y, Wang L and Xie G 2008 Syst. Control Lett. 57 175
[17] Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 018901
[18] Lu X Q, Francis A and Chen S H 2010 Chin. Phys. Lett. 27 050503
[19] Lu J, Ho D W C and Kurths J 2009 Phys. Rev. E 80 066121
[20] Peng K and Yang Y P 2009 Physica A 388 193
[21] Song Q, Cao J D and Yu W W 2010 Syst. Control Lett. 59 553
[22] Hong Y, Cao L, Cheng D and Hu J 2007 IEEE Trans. Autom. Control 52 943
[23] Cheng D, Wang J and Hu X 2008 IEEE Trans. Autom. Control 53 1765
[24] Nosrati S and Shafiee M 2007 The 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops, April 16–20, 2004 Amirkabir University of Technology, Tehran, p. 1
[25] Zhou J and Wang Q 2009 Automatica 45 1455
[26] Qing H, Haddad W M and Bhat S P 2010 Nonlinear Anal. Hybrid Syst. 4 557
[27] Wang X and Hong Y 2010 J. Syst. Sci. Complex. 23 209
[28] Jiang F C and Wang L 2009 Physica D 238 1550
[29] Wang L and Xiao F 2010 IEEE Trans. Autom. Control 55 950
[30] Rouche N, Habets P and Laloy M 1977 Stability Theory by Liapunov’s Direct Method (New York: Springer-Verlag) p. 60
[31] Rosier L 1992 Syst. Control Lett. 19 467
[1] Finite-time consensus of heterogeneous multi-agent systems
Zhu Ya-Kun (朱亚锟), Guan Xin-Ping (关新平), Luo Xiao-Yuan (罗小元). Chin. Phys. B, 2013, 22(3): 038901.
No Suggested Reading articles found!