Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040509    DOI: 10.1088/1674-1056/22/4/040509
GENERAL Prev   Next  

Interactions among special embed-solitons for the (3+1)-dimensional Burgers equation

Zhang Wen-Ting (张雯婷), Dai Chao-Qing (戴朝卿), Chen Wei-Lu (陈未路)
School of Sciences, Zhejiang A & F University, Lin'an 311300, China
Abstract  With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss interaction behaviors among taper-like, plateau-type ring, and rectangle-type embed-solitons in the periodic wave background. All interaction behaviors among them are completely elastic, and no phase shift appears after interaction.
Keywords:  (3+1)-dimensional Burgers equation      modified mapping method      interaction between special embed-solitons  
Received:  05 August 2012      Revised:  15 October 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11005092), the Undergraduate Scientific and Technological Innovation Project of Zhejiang Province of China (Grant No. 2012R412018), and the Undergraduate Innovative Base Program of Zhejiang A & F University.
Corresponding Authors:  Dai Chao-Qing     E-mail:  dcq424@126.com

Cite this article: 

Zhang Wen-Ting (张雯婷), Dai Chao-Qing (戴朝卿), Chen Wei-Lu (陈未路) Interactions among special embed-solitons for the (3+1)-dimensional Burgers equation 2013 Chin. Phys. B 22 040509

[1] Fei J X and Zheng C L 2012 Chin. Phys. B 21 070304
[2] Dai C Q, Chen R P and Wang Y Y 2012 Chin. Phys. B 21 030508
[3] Ma Z Y and Ma S H 2012 Chin. Phys. B 21 030507
[4] Yin J P and Lou S Y 2003 Chin. Phys. Lett. 20 1448
[5] Zhu H P and Zheng C L 2007 Commun. Theor. Phys. 48 57
[6] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[7] Ma S H, Fang J P, Ren Q B and Yang Z 2012 Chin. Phys. B 21 050511
[8] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 060506
[9] Ma Z Y 2007 Chin. Phys. 16 1848
[10] Jiang L H, Ma S H, Fang J P and Wu H Y 2012 Acta Phys. Sin. 61 020510 (in Chinese)
[11] Huber A 2007 Chaos, Solitons and Fractals 34 765
[12] Dai C Q, Wang X G and Zhang J F 2011 Ann. Phys. 326 645
[1] Lump and interaction solutions to the (3+1)-dimensional Burgers equation
Jian Liu(刘健), Jian-Wen Wu(吴剑文). Chin. Phys. B, 2020, 29(3): 030201.
[2] Non-completely elastic interactions in (2+1)-dimensional dispersive long wave equation
Chen Wei-Lu (陈未路), Zhang Wen-Ting (张雯婷), Zhang Li-Pu (张立溥), Dai Chao-Qing (戴朝卿 ). Chin. Phys. B, 2012, 21(11): 110507.
[3] Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq--Burgers equation
Zhang Liang(张亮) Zhang Li-Feng(张立凤), and Li Chong-Yin(李崇银) . Chin. Phys. B, 2008, 17(2): 403-410.
[4] New exact solutions of nonlinear Klein--Gordon equation
Zheng Qiang (郑强), Yue Ping (岳萍), Gong Lun-Xun (龚伦训). Chin. Phys. B, 2006, 15(1): 35-38.
No Suggested Reading articles found!