a Graduate School of China Academy of Engineering Physics, Beijing 100088, China; b Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; c Laboratório Nacional de Computa??o Cientifica, MCT, Avenida Getúlio Vargas 333, 25651-075 Petrópolis, RJ, Brazil
Abstract This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota–Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence of functions which converges to the exact solution of the problem and is based on the use of the Lagrange multiplier for the identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.