Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 062701    DOI: 10.1088/1674-1056/19/6/062701
NUCLEAR PHYSICS Prev   Next  

The g-factors and magnetic rotation in 82Rb

Yuan Da-Qing(袁大庆), Zheng Yong-Nan(郑永男), Zuo Yi(左翼), Fan Ping(范平), Zhou Dong-Mei(周冬梅), Wu Xiao-Guang(吴晓光), Zhu Li-Hua(竺礼华), Li Guang-Sheng(李广生), Xu Guo-Ji(许国基), Fan Qi-Wen(樊启文), Zhang Xi-Zhen(张锡珍), and Zhu Sheng-Yun(朱升云)
China Institute of Atomic Energy, Beijing 102413, China
Abstract  The g-factors of the intra-band states 12, 13, 14, 15 in a magnetic-rotational band built on the 11 state in 82Rb are measured for the first time by using a transient magnetic field-ion implantation perturbed angular distribution (TMF-IMPAD) method. The magnetic-rotational band in 82Rb is populated by the 60Ni(27Al,4pn)82Rb reaction, and the time-integral Larmor precessions are measured after recoil implantation into a polarized Fe foil. The calculation of g-factors is also carried out in terms of a semi-classical model of independent particle angular momentum coupling on the basis of the four-quasiparticle configuration $\pi ( {g_{9 / 2} } )^2 \otimes \pi (p_{3 / 2} ,f_{5 / 2} ) \otimes \nu ( {g_{9 / 2} } )$. The measured and calculated g-factors are in good agreement with each other. The g-factors and deduced shear angles decrease with the increase of spin along the band. This clearly illustrates the shear effect of a step-by-step alignment of the valence protons and neutrons in magnetic rotation. The semi-classical calculation also shows that the alignment of the valence neutron angular momentum is faster than that of the valence protons, which results in a decrease of g-factors with increasing spin. The present results provide solid evidence of the shear mechanism of magnetic rotation.
Keywords:  82Rb      magnetic rotation      g-factor      TMF-IMPAD  
Received:  24 December 2008      Accepted manuscript online: 
PACS:  21.10.Ky (Electromagnetic moments)  
  21.10.Re (Collective levels)  
  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
  21.10.Hw (Spin, parity, and isobaric spin)  
  21.60.-n (Nuclear structure models and methods)  
  27.50.+e (59 ≤ A ≤ 89)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10435010 and 10375093).

Cite this article: 

Yuan Da-Qing(袁大庆), Zheng Yong-Nan(郑永男), Zuo Yi(左翼), Fan Ping(范平), Zhou Dong-Mei(周冬梅), Wu Xiao-Guang(吴晓光), Zhu Li-Hua(竺礼华), Li Guang-Sheng(李广生), Xu Guo-Ji(许国基), Fan Qi-Wen(樊启文), Zhang Xi-Zhen(张锡珍), and Zhu Sheng-Yun(朱升云) The g-factors and magnetic rotation in 82Rb 2010 Chin. Phys. B 19 062701

[1] Neffgen M, Baldsiefen G, Frauend? rf S, Grawe H, Heese J, H\"ubel H, Kluge H, Korichi A, Korten W, Maier K H, Mehta D, Meng J, Nenoff N, Piiparinen M, Sch\"onhofer M, Schubart R, van Severen U J, Singh N, Sletten G, Thirumala Rao B V and Willsau P 1995 Nucl. Phys. A 595 499
[2] Hü bel H 2005 Progr. Part. Nucl. Phys. 54 1
[3] Datta P, Chattopadhyay S, Banerjeeet P, Bhattacharya S, Dasmahapatra B, Ghosh T K, Goswami A, Pal S, Saha Sarkar M, Sen H S, Jain C, Joshi P K and Amita 2004 Phys. Rev . C 69 044317
[4] Chmel S, Brandolini F, Ribas R V, Baldsiefen G, G\"orgen A, De Poli M, Pavan P and H\"ubel H 1997 Phys. Rev. Lett . 79 2002
[5] Baldsiefen G, H\"ubel H, Korten W, Mehta D, Nenoff N, Thirumala Rao B V, Willsau P, Grawe H, Heese J, Kluge H, Maier K H, Schubart R, Frauendorf S and Maier H J 1994 Nucl. Phys . A 574 521
[6] Frauendorf S 2001 Rev. Mod. Phys . 73 463
[7] Macchiavelli A O, Clark R M, Fallon P, Deleplanque M A, Diamond R M, Kr\"ucken R, Lee I Y, Stephens F S, Asztalos S and Vetter K 1998 Phys. Rev . C 57 R1073
[8] Clark R M and Macchiavelli A O 2000 Ann. Rev. Nucl. Part. Sci . 50 1
[9] Schnare H, Schwengner R, Frauendorf S, D\"onau F, K\"aubler L, Prade H, Jungclaus A, Lieb K P, Lingk C, Skoda S, Eberth J, de Angelis G, Gadea A, Farnea E, Napoli D R, Ur C A and Lo Bianco G 1999 Phys. Rev. Lett . 82 4408
[10] Schwengner R, Rainovski G, Schnare H, Wagner A, D\"onau F, Jungclaus A, Hausmann M, Iordanov O, Lieb K P, Napoli D R, de Angelis G, Axiotis M, Marginean N, Brandolini F and Rossi Alvarez C 2002 Phys. Rev . C 66 024310
[11] D? ring J, Ulrich D, Johns G D, Johns G D, Riley M A and Tabor S L 1999 Phys. Rev. C 59 71
[12] Zhu S Y, Luo O, Gou Z H, Zheng S G, Fan Z G, Li A L, Li G S, Wen S X, Dai Z Y, Liu X G and Wu X G 1996 Chin. J. Nucl. Phys. 18 171
[13] Zhu S Y, Luo O, Li G S, Fan Z G, Xu Y J, Gao Z C, Wen S X, Wu X G, Liu X G, Xu G J, Zhu J Z, Chen Y S, Matsuta K, Fukuda M, Mihara M and Minamisono T 2000 Chin. Phys. Lett. 17 560
[14] Tarasov O B and Bazin D 2003 Nucl. Inst. &Meth. Phys. Res. B 204 174
[15] Omata K, Fujita Y, Yoshikawa N, Sekiguchi M and Shida Y 1991 Proc. IEEE 7th Real Time '91 on Computer Applications in Nuclear, Particle and Plasma Physics Jü lich, p.~243
[16] Benczer-Koller, Hass N and Sak J 1980 Ann. Rec. Nucl. Part. Sci . 30 53
[17] Shu N K B, Melnik D, Brennan J M, Brennan J M, Semmler W and Benczer-Koller N 1980 Phys. Rev. C 21 1828
[18] Ribas R V 1993 Nucl. Instr. &Methods A 328 553
[19] Speidl K H, Kenn O and Nowacki F 2005 Progr. Part. Nucl. Phys. 49 91
No Suggested Reading articles found!