|
|
The g-factors and magnetic rotation in 82Rb |
Yuan Da-Qing(袁大庆), Zheng Yong-Nan(郑永男), Zuo Yi(左翼), Fan Ping(范平), Zhou Dong-Mei(周冬梅), Wu Xiao-Guang(吴晓光), Zhu Li-Hua(竺礼华), Li Guang-Sheng(李广生), Xu Guo-Ji(许国基), Fan Qi-Wen(樊启文), Zhang Xi-Zhen(张锡珍), and Zhu Sheng-Yun(朱升云)† |
China Institute of Atomic Energy, Beijing 102413, China |
|
|
Abstract The g-factors of the intra-band states 12, 13, 14, 15 in a magnetic-rotational band built on the 11 state in 82Rb are measured for the first time by using a transient magnetic field-ion implantation perturbed angular distribution (TMF-IMPAD) method. The magnetic-rotational band in 82Rb is populated by the 60Ni(27Al,4pn)82Rb reaction, and the time-integral Larmor precessions are measured after recoil implantation into a polarized Fe foil. The calculation of g-factors is also carried out in terms of a semi-classical model of independent particle angular momentum coupling on the basis of the four-quasiparticle configuration $\pi ( {g_{9 / 2} } )^2 \otimes \pi (p_{3 / 2} ,f_{5 / 2} ) \otimes \nu ( {g_{9 / 2} } )$. The measured and calculated g-factors are in good agreement with each other. The g-factors and deduced shear angles decrease with the increase of spin along the band. This clearly illustrates the shear effect of a step-by-step alignment of the valence protons and neutrons in magnetic rotation. The semi-classical calculation also shows that the alignment of the valence neutron angular momentum is faster than that of the valence protons, which results in a decrease of g-factors with increasing spin. The present results provide solid evidence of the shear mechanism of magnetic rotation.
|
Received: 24 December 2008
Accepted manuscript online:
|
PACS:
|
21.10.Ky
|
(Electromagnetic moments)
|
|
21.10.Re
|
(Collective levels)
|
|
25.75.-q
|
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
|
|
21.10.Hw
|
(Spin, parity, and isobaric spin)
|
|
21.60.-n
|
(Nuclear structure models and methods)
|
|
27.50.+e
|
(59 ≤ A ≤ 89)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos.~10435010 and
10375093). |
Cite this article:
Yuan Da-Qing(袁大庆), Zheng Yong-Nan(郑永男), Zuo Yi(左翼), Fan Ping(范平), Zhou Dong-Mei(周冬梅), Wu Xiao-Guang(吴晓光), Zhu Li-Hua(竺礼华), Li Guang-Sheng(李广生), Xu Guo-Ji(许国基), Fan Qi-Wen(樊启文), Zhang Xi-Zhen(张锡珍), and Zhu Sheng-Yun(朱升云) The g-factors and magnetic rotation in 82Rb 2010 Chin. Phys. B 19 062701
|
[1] |
Neffgen M, Baldsiefen G, Frauend? rf S, Grawe H, Heese J, H\"ubel H, Kluge H, Korichi A, Korten W, Maier K H, Mehta D, Meng J, Nenoff N, Piiparinen M, Sch\"onhofer M, Schubart R, van Severen U J, Singh N, Sletten G, Thirumala Rao B V and Willsau P 1995 Nucl. Phys. A 595 499
|
[2] |
Hü bel H 2005 Progr. Part. Nucl. Phys. 54 1
|
[3] |
Datta P, Chattopadhyay S, Banerjeeet P, Bhattacharya S, Dasmahapatra B, Ghosh T K, Goswami A, Pal S, Saha Sarkar M, Sen H S, Jain C, Joshi P K and Amita 2004 Phys. Rev . C 69 044317
|
[4] |
Chmel S, Brandolini F, Ribas R V, Baldsiefen G, G\"orgen A, De Poli M, Pavan P and H\"ubel H 1997 Phys. Rev. Lett . 79 2002
|
[5] |
Baldsiefen G, H\"ubel H, Korten W, Mehta D, Nenoff N, Thirumala Rao B V, Willsau P, Grawe H, Heese J, Kluge H, Maier K H, Schubart R, Frauendorf S and Maier H J 1994 Nucl. Phys . A 574 521
|
[6] |
Frauendorf S 2001 Rev. Mod. Phys . 73 463
|
[7] |
Macchiavelli A O, Clark R M, Fallon P, Deleplanque M A, Diamond R M, Kr\"ucken R, Lee I Y, Stephens F S, Asztalos S and Vetter K 1998 Phys. Rev . C 57 R1073
|
[8] |
Clark R M and Macchiavelli A O 2000 Ann. Rev. Nucl. Part. Sci . 50 1
|
[9] |
Schnare H, Schwengner R, Frauendorf S, D\"onau F, K\"aubler L, Prade H, Jungclaus A, Lieb K P, Lingk C, Skoda S, Eberth J, de Angelis G, Gadea A, Farnea E, Napoli D R, Ur C A and Lo Bianco G 1999 Phys. Rev. Lett . 82 4408
|
[10] |
Schwengner R, Rainovski G, Schnare H, Wagner A, D\"onau F, Jungclaus A, Hausmann M, Iordanov O, Lieb K P, Napoli D R, de Angelis G, Axiotis M, Marginean N, Brandolini F and Rossi Alvarez C 2002 Phys. Rev . C 66 024310
|
[11] |
D? ring J, Ulrich D, Johns G D, Johns G D, Riley M A and Tabor S L 1999 Phys. Rev. C 59 71
|
[12] |
Zhu S Y, Luo O, Gou Z H, Zheng S G, Fan Z G, Li A L, Li G S, Wen S X, Dai Z Y, Liu X G and Wu X G 1996 Chin. J. Nucl. Phys. 18 171
|
[13] |
Zhu S Y, Luo O, Li G S, Fan Z G, Xu Y J, Gao Z C, Wen S X, Wu X G, Liu X G, Xu G J, Zhu J Z, Chen Y S, Matsuta K, Fukuda M, Mihara M and Minamisono T 2000 Chin. Phys. Lett. 17 560
|
[14] |
Tarasov O B and Bazin D 2003 Nucl. Inst. &Meth. Phys. Res. B 204 174
|
[15] |
Omata K, Fujita Y, Yoshikawa N, Sekiguchi M and Shida Y 1991 Proc. IEEE 7th Real Time '91 on Computer Applications in Nuclear, Particle and Plasma Physics Jü lich, p.~243
|
[16] |
Benczer-Koller, Hass N and Sak J 1980 Ann. Rec. Nucl. Part. Sci . 30 53
|
[17] |
Shu N K B, Melnik D, Brennan J M, Brennan J M, Semmler W and Benczer-Koller N 1980 Phys. Rev. C 21 1828
|
[18] |
Ribas R V 1993 Nucl. Instr. &Methods A 328 553
|
[19] |
Speidl K H, Kenn O and Nowacki F 2005 Progr. Part. Nucl. Phys. 49 91
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|