Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044209    DOI: 10.1088/1674-1056/19/4/044209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Interactions between optical bullets with different velocities in the three-dimensional cubic-quintic complex Ginzburg-Landau equation

Zheng Lang(郑浪) and Tang Yi(唐翌)
Department of Physics and Institute of Modern Physics, Xiangtan University, Xiangtan 411105, China
Abstract  By using the three-dimensional complex Ginzburg--Landau equation with cubic--quintic nonlinearity, this paper numerically investigates the interactions between optical bullets with different velocities in a dissipative system. The results reveal an abundance of interesting behaviours relating to the velocities of bullets: merging of the optical bullets into a single one at small velocities; periodic collisions at large velocities and disappearance of two bullets after several collisions in an intermediate region of velocity. Finally, it also reports that an extra bullet derives from the collision of optical bullets when optical bullets are at small velocities but with high energies.
Keywords:  optical bullet      dissipative soliton      complex Ginzburg--Landau equation  
Received:  14 April 2009      Revised:  08 July 2009      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: Project supported by the Key Project of the Educational Department of Hunan Province of China (Grant No.~04A058), and the General Project of the Educational Department of Hunan Province of China (Grant No.~07C754).

Cite this article: 

Zheng Lang(郑浪) and Tang Yi(唐翌) Interactions between optical bullets with different velocities in the three-dimensional cubic-quintic complex Ginzburg-Landau equation 2010 Chin. Phys. B 19 044209

[1] Nicolis G and Prigogine I 1977 Self Organization in Nonequilibrium Systems---From Dissipative Structures to Order through Fluctuations (New York: Academic) p.76
[2] Aronson I S and Kramer L 2002 Rev. Mod. Phys. 74 99
[3] Ippen E P 1994 Appl. Phys. B 58 159
[4] Bakonyi Z, Michaelis D, Peschel U, Onishchukov G and Lederer F 2002 J. Opt. Soc. Am. B 19 487
[5] Song L J, Shi X J, Li L and Zhou G S 2005 Chin. Phys. 14 1174
[6] Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99
[7] Bowman C and Newell A C 1998 Rev. Mod. Phys. 70 289
[8] Soto-Crespo J M, Akhmediev N N and Ankiewicz A 2000 Phys. Rev. Lett. 85 2937
[9] Soto-Crespo J M, Akhmediev N N and Grelu P 2006 Phys. Rev. E 74 046612
[10] Afanasjev V V, Akhmediev N N and Soto-Crespo J M 1996 Phys. Rev. E 53 1931
[11] Akhmediev N N and Ankiewicz A 2005 Dissipative Solitons (New York: Academic) p.216
[12] Quiroga-Teixeiro M and Michinel H 1997 J. Opt. Soc. Am. B 14 2004
[13] Quiroga-Teixeiro M, Berntson A and Michinel H 1999 J. Opt. Soc. Am.} B 16 }1697
[14] Song L J, Li L and Zhou G S 2007 Chin. Phys. 16 148
[15] Soto-Crespo J M, Grelu P H and Akhmediev N N 2006 Opt. Express 14] 4013
[16] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. A 77 033817
[17] Agrawal G P 1991 Phys. Rev. A 44 7493
[18] Kivshar Y S and Agrawal G P 2003 Optical Solitons (London: Academic) p.173
[19] Peng J Z, Yang H and Tang Y 2009 Chin. Phys. B 18 2364
[20] Zheng H J, Liu S L and Xu J P 2007 Chin. Phys. 16 2023
[21] Akhmediev N N and Ankiewicz A 1997 Solitons, Nonlinear Pulses and Beams} (London: Academic) p.227
[22] Edmundson D E and Enns R H 1993 Opt. Lett. 18 1609
[23] Makhankov V G 1990 Soliton Phenomenology} (London: Academic) p.115
[24] Jakubowski M H and Steiglitz K 1997 Phys. Rev. E 56 7267
[25] Snyder A W, Mitchell D J, Polodian L and Ladouceur F 1991 Opt. Lett. 16 21
[26] Snyder A W and Sheppard A P 1993 Opt. Lett. 18 482
[27] Pigier C, Uzdin R, Carmon T, Segev M, Nepomnyaschchy A and Musslimani Z H 2001 Opt. Lett. 26 1577
[28] Stegeman G I and Segev M 1999 Science 286 1518
[29] Ultanir E A, Stegeman G I, Lange C H and Lederer F 2004 Opt. Lett. 29 283
[1] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[2] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[3] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[4] Dual-wavelength dissipative soliton operation of an erbium-doped fibre laser using a nonlinear polarization rotation technique
Cao Wen-Jun(曹文俊), Xu Wen-Cheng(徐文成), Luo Zhi-Chao(罗智超), Wang Lu-Yan (王璐燕),Wang Hui-Yi(王会义), Dong Jiang-Li (董江莉), and Luo Ai-Ping (罗爱平) . Chin. Phys. B, 2011, 20(11): 114209.
[5] Relation between the complex Ginzburg--Landau equation and reaction--diffusion system
Shao Xin (邵昕), Ren Yi (任毅), Ouyang Qi (欧阳颀). Chin. Phys. B, 2006, 15(3): 513-517.
No Suggested Reading articles found!