Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 020401    DOI: 10.1088/1674-1056/19/2/020401
GENERAL Prev   Next  

Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum

Gamal G.L. Nashed
Centre for Theoretical Physics, The British University in Egypt, El-Sherouk City, Misr -- Ismalia Desert Road, Postal No. 11837, P.O. Box 43, Egypt
Abstract  The energy--momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space--time their energies are different. Therefore, a regularized expression of the gravitational energy--momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy--momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space--times are calculated. In spite of using a static space--time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space--times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear.
Keywords:  teleparallel equivalent of general relativity      brane world black holes      gravitational energy--momentum tensor      regularized expression of the gravitational energy--momentum  
Received:  22 January 2009      Revised:  14 June 2009      Accepted manuscript online: 
PACS:  04.70.-s (Physics of black holes)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  11.25.Wx (String and brane phenomenology)  
  04.20.Gz (Spacetime topology, causal structure, spinor structure)  
  02.40.-k (Geometry, differential geometry, and topology)  

Cite this article: 

Gamal G.L. Nashed Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum 2010 Chin. Phys. B 19 020401

[1] Kaluza T 1920 Sitzungseber. Press. Akad. Wiss.Phys. Math. KlasseK1 966
[1a] Klein O 1926 Z. Phys. 37 895
[2] Ho?ava P and Witten E 1996 Nucl.Phys. B 460 506
[2a] Ho?ava P and Witten E 1996 Nucl. Phys. B 4 7594
[3] Randall L and Sundrum R 1999 Phys. Rev. Lett. 8 3 3370 4690
[4] Shiromizu T, Maeda K and Sasaki M 2000 Phys. Rev. D 62 024012
[5] Bronnikov K A, Melnikov V N and Dehnen H 2003 Phys. Rev. D 68 024025
[6] Bronnikov K A, Clément G,Constantinidis C P and Favris J C 1998 Phys. Lett. A 24 3 121
[6a] Bronnikov K A, Clément G, Constantinidis C P andFavris J C 1998 Grav. Cos. 4 128
[7] Kibble T W B 1961 J. Math. Phys. 2 212
[8] Hehl F W, von der Heyde P, Kerlick D andNester J 1976 Rev. Mod. Phys. 48 393
[9] Hehl F W 1980 General Relativity and Gravitation: One Hundred Yearsafter the Birth of Albert Einstein ed. Held A (New York: Plenum)Vol. 1
[10] Hayashi K and Shirafuji T 1980 Prog. Theor. Phys. 64 866, 883, 1435, 2222
[10a] Hayashi K and Shirafuji T 1980 Prog.Theor. Phys. 65 525
[11] Blagojevi? M and Nikoli? I A 2000 Phys. Rev. D 62 024021
[12] Hehl F W, Nitsch J and von der Heyde P1980 General Relativity and Gravitation Held A ed. (New York: Plenum)
[13] Hehl F W, MacCrea J D, Mielke E W and Neèman Y 1995 Phys. Rep. 258 1
[14] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[15] Nitsch J 1980 Cosmology and Gravitation: Spin,Torsion, Rotation and Supergravity eds. Bergman P G and deSabbata V (New York: Plenum)
[16] Bergmann P G and Thomson R 1953 Phys. Rev. 89 401
[17] Landau L D and Lifshitz E M 1980 The Classical Theory ofFields (Oxfor: Pergamon Press)
[18] Pellegrini C and Plebanski J 1963 Mat. Fys. Scr. Dan. Vid. Selsk. 2 No.3
[19] M?ller C 1961 Ann. Phys. 12 118
[20] M?ller C 1962 ``Tetrad Fields and Conservation Laws inGeneral Relativity'' in Proc. International School of Physics``Enrico Fermi"} ed. M?ller C (London: Academic Press)
[21] M?ller C 1961 Mat. Fys. Medd. Dan. Vid. Selsk. 1 10
[22] M?ller C 1964 Nucl. Phys. 57 330
[23] Hayashi K and Nakano T 1967 Prog. Theor. Phys. 38 491
[24] Kopzyński W 1982 J. Phys. A 15 493
[25] Chang C C, Nester J M and Chen C M 1999 Phys. Rev. Lett. 8 3 1897
[25a] Tung R S and Nester J M 1999 Phys. Rev. D 60 021501
[25b] Nester J M and Yo Chin H J 1999 J. Phys. 37 113
[25c] Nester J M, Ho F H and Chen C M 2003 Quasilocal Center-of-Mass for Teleparallel Gravity, Proceeding ofthe 10th. Marcel Grossman Meeting (Rio de Janeiro)} gr-qc/0403101
[25d] Nester J M 1989 Phys. Lett. A 139 112
[25e] Nester J M 1992 J. Math. Phys. 3 3 910
[25f] Nester J M 1988 Class.Quantum Grav. 5 1003
[26] Toma N 1991 Prog. Theor. Phys. 86 659
[26a] Kawai T and Toma N 1992 Prog. Theor. Phys. 87 583
[27] de Andrade V C and Pereira J G 1997 Phys. Rev. D 56 4689
[27a] de Andrade V C, Guillen L C T and Pereira J G 2000 Phys.Rev. Lett. 84 4533
[27b] de Andrade V C, Guillen L C T and Pereira J G2001 Phys. Rev. D 64 027502
[28] Maluf J W and da Rocha-Neto J F 2001 Phys. Rev. D 64 084014
[29] Schwinger J 1963 Phys. Rev. 130 1253
[30] Maluf J W 1994 J. Math. Phys. 35 335
[30a] Maluf J W and Kneip A 1997 J. Math. Phys. 38 458
[30b] MalufJ W and da Rocha-Neto J F 1999 J. Math. Phys. 40 1490
[30c] Maluf J W and Goya A 2001 Class. Quantum Grav. 18 5143
[30d] Maluf J W, da Rocha-Neto J F, Toribio T M L and Castello-Branco K H2002 Phys. Rev. D 65 124001
[30e] Sousa A A and Maluf J W2002 Prog. Theor. Phys. 108 457
[31] da Rocha-Neto J F andCastello-Branco K H 2003 JHEP 0311 002
[32] Regge T and Teitelboim C 1974 Ann. Phys.(NewYork) 88 286
[33] York Jr. J W 1980 Energy and Momentum of theGravitational Field, in ``Essays in General Relativity'' ed.Tipler F J (New York: Acdemic Press)
[34] Beig R and Murchadha N ó 1987 Ann.Phys.(New York) 174 463
[35] Szabados L B 2003 Class. Quantum Grav. 20 2627
[36] Maluf J W and Sousa A A 2000 Hamiltonian Formulation of TeleparallelTheories of Gravity in the Time Gauge gr-qc/0002060
[37] Sousa A A and Maluf J W 2000 Prog. Theor. Phys. 104 531
[38] Maluf J W and de Rocha-Neto J F 2001 Phys. Rev. D 64 084014
[39] Maluf J W, Ulhoa S C, Faria F F and da Rocha-Neto J F2006 Calss. Quantum Grav. 23 6245
[40] Sousa A A, Pereira R B and da Rocha-Neto J F 2005 Prog. Theor. Phys. 1141179
[40a] Sousa A A, Moura J S and Pereira R B gr-qc/0702109
[41] Xu S X and Jing J L 2006 Class. Quantum Grav. 23 4659
[42] Nester J M 1989 Int. J. Mod. Phys. A 4 1755
[43] Blagojevi? M and Vasili? M 2001 Phys. Rev.D 64 044010
[44] Change C C and Nester J M 2000 Grav. & Cosmol. 6 257
[45] So L L, Nester J M and Chen H 2006 The 7th.Conference on Gravitation and Astrophysics gr-qc/0605150
[46] Szabados L B 2004 ``Quasi-Local Energy--Momentum and Angular Momentum in GR: A Review Article'',Living Rev. Relativity 7 4,http://www.livingreviews.org/lrr-2004-4.
[47] Maluf J W 2005 Annalen Phys. 14723
[47a] Maluf J W Gravitational and Cosmology 11 284
[48] Christodoulou D 1970 Phys. Rev. Lett. 25 1596
[49] Bergqvist G 1992 Class. Quantum Grav. 9 1753
[50] Komar A 1959 Phys. Rev. 11 3 934
[50a] Winicour J 1980 ``Angular Momentum in General Relativity'', inGeneral Relativity and Gravitation } ed. Held A (New York: Plenum)
[50b] Ashtekar A ``Angular Momentum of Isolated Systems in GeneralRelativity'', in Cosmology and Gravitation ed. Bergmann P G andde Sabbata V 1980 (New York: Plenum)
[51] Hayashi K and Shirafuji T 1985 Prog. Theor.Phys. 7 3 54
[51a] Blagojevi? M and Vasili?M 1988 Class. Quantum Grav. 5 1241
[51b] Kawai T 2000 Phys. Rev. D 62 104014
[51c] Kawai T, Shibata K and Tanaka I 2000 Prog. Theor. Phys. 104 505
[52] Dirac P A M 1964 Lectures on Quantum Mechanics (Belfer Gradute Schoolof Science (Monographs Series No. 2) (New York: YeshivaUniversity)
[53] Robertson H P 1932 Ann. Math.(Princeton) 3 3 496
[54] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[55] Shirafuji T, Nashed G G L and Hayashi K 1996 Prog. Theor. Phys. 95 665
[56] Salti M and Aydo?du Oand Korunur M appear in JHEP} gr-qc/0611014
[57] Arnowitt R, Deser S and Misner C W 1962 Gravitation: An Introduction to Current Research } ed. Witten L (NewYouk: Wiley)
[58] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman) p435
[59] Casadio R, Fabbri A and Mazzacurati L 2002 Phys. Rev. D 65 084040
[60] Germani C and Maartens R 2001 Phys. Rev. D 64 124010
[61] Bronnikov K A and Kim S W 2003 Phys. Rev. D 67 064027
[62] Maluf J W, Veiga M V O and da Rocha-Neto J F 2007 Gen. Rel. Grav. 39 227
[63] Bae(c)kler P, Hecht R, Hehl F W and Shirafuji T 1987 Prog. Theor. Phys. 78 16
[64] Brown J D and York J W Jr. 1991 Quasi-Local Energy in General Relativity, Proceedings of the Joint SummerResearch Conference on Mathematical Aspects of Classical FieldTheory, ed. Gotay M J, Marsden J E and Moncrief V (AmericanMathematical Socity)
[64a] Brown J D and York J W Jr. 1993 Phys. Rev. D 47 1407
[65] Sharif M and Jamil Amir M 2008 Mod. Phys. Lett. A 23 969
[66] Kramer D, Stephani H, MacCullum M A H andHerlt E 1980 Exact Solutions of Einstein Field Equations(Cambridge: Cambridge University Press)
[67] Hall G S 2004 Symmetryies and Curvature Structure inGeneral Relativity (Sigapore: World Scientific)
[68] Feroze T, Mahomed F M and Qadir A 2006 NonlinearDynam. 45 65
[69] M?ller C 1966 Mat. Fys. Medd. Dan. Vid. Selsk. 35 No. 3.
No Suggested Reading articles found!