Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107503    DOI: 10.1088/1674-1056/19/10/107503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Response of colloidal liquids containing magnetic holes of different volume densities to magnetic field characterized by transmission measurement

Deng Hai-Dong(邓海东)a)b), Sun Ting(孙婷)a), Zhao Wei-Ren(赵韦人)c), Fu Zhi-Cheng(符志成)a), Dai Qiao-Feng(戴峭峰) a), Wu Li-Jun(吴立军)a), Lan Sheng(兰胜)a)†, and Achanta Venu Gopald)
a Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; b College of Science, South China Agricultural University, Guangzhou 510642, China; c School of Physics and Optoelectronics, Guangdong University of Technology, Guangzhou 510006, China; d Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
Abstract  This paper systematically investigates the response of colloidal liquids containing magnetic holes of different volume densities to magnetic field by conventional transmission measurements. It finds that the enhancement in the transmission of such a colloidal liquid under a magnetic field exhibits a strong dependence on the volume density of magnetic holes. A linear increase in the maximum enhancement factor is observed when the volume density of magnetic holes is below a critical level at which a maximum enhancement factor of ~150 is achieved in the near infrared region. Once the volume density of magnetic holes exceeds the critical level, a sharp drop of the maximum enhancement factor to ~2 is observed. After that, the maximum enhancement factor increases gradually till a large volume density of ~9%. By monitoring the arrangement of magnetic holes under a magnetic field, it reveals that the colloidal liquids can be classified into three different phases, i.e., the gas-like, liquid-like and solid-like phases, depending on the volume density of magnetic holes. The response behaviour of colloidal liquids to magnetic field is determined by the interaction between magnetic holes which is governed mainly by their volume density. A phase transition, which is manifested in the dramatic reduction in the maximum enhancement factor, is clearly observed between the liquid-like and solid-like phases. The optical switching operations for colloidal liquids in different phases are compared and the underlying physical mechanisms are discussed.
Keywords:  magnetic holes      phases change      optical switching operations  
Received:  02 February 2010      Revised:  20 April 2010      Accepted manuscript online: 
PACS:  75.50.Mm (Magnetic liquids)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  82.70.Dd (Colloids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974060 and 10774050), the Program for Innovative Research Team of the Higher Education of Guangdong Province of China (Grant No. 06CXTD005) and President Foundation of South China Agricultural University (Grant No. 2009K018).

Cite this article: 

Deng Hai-Dong(邓海东), Sun Ting(孙婷), Zhao Wei-Ren(赵韦人), Fu Zhi-Cheng(符志成), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜), and Achanta Venu Gopal Response of colloidal liquids containing magnetic holes of different volume densities to magnetic field characterized by transmission measurement 2010 Chin. Phys. B 19 107503

[1] Ivanov A O and Kantorovich S S 2004 Phys. Rev. E 70 021401
[2] Raikher Y L, Stepanov V I, Bacri J C and Perzynski R 2002 Phys. Rev. E 66 021203
[3] Di Z, Chen X, Pu S, Hu X and Xia Y 2006 Appl. Phys. Lett. 89 211106
[4] Philip J, Laskar J M and Raj B 2008 Appl. Phys. Lett. 92 221911
[5] Wu K T, Yao Y D, Wang C R C, Chen P F and Yeh E T 1999 J. Appl. Phys. 85 5959
[6] Li J, Liu X, Lin Y, Bai L, Li Q, Chen X and Wang A 2007 Appl. Phys. Lett. 91 253108
[7] Liu G X, Xu C, Zhang P Q and Wu T W 2009 Acta Phys. Sin. 58 2005 (in Chinese)
[8] Yang H T, Shen C M, Du S X, Su Y K, Wang Y G, Wang Y P and Gao H J 2003 Acta Phys. Sin. 52 3114 (in Chinese)
[9] Dou Y W, Tong X W, Zhong W, Wang T X, Gan C M and Zhang X R 1992 Acta Phys. Sin. 41 144 (in Chinese)
[10] Horng H E, Yang S Y, Lee S L, Hong C Y and Yang H C 2001 Appl. Phys. Lett. 79 350
[11] Hong C Y, Horng H E, Jang I J, Wu J M, Lee S L, Yeung W B and Yang H C 1998 J. Appl. Phys. 83 6771
[12] Horng H E, Hong C Y, Lee S L, Ho C H, Yang S Y and Yang H C 2000 J. Appl. Phys. 88 5904
[13] Hong C Y 1999 J. Magn. Magn. Mater. 201 178
[14] Horng H E, Chen C S, Fang K L, Yang S Y, Chieh J J, Hong C Y and Yang H C 2004 Appl. Phys. Lett. 85 5592
[15] Deng H D, Liu J, Zhao W R, Zhang W, Lin X S, Sun T, Dai Q F, Wu L J, Lan S and Gopal A V 2008 Appl. Phys. Lett. 92 233103
[16] Pu S, Chen X, Chen L, Liao W, Chen Y and Xia Y 2005 Appl. Phys. Lett. 87 021901
[17] Bacri J C, Cebers A, Bourdon A, Demouchy G, Heegaard B M, Kashevsky B and Perzynski R 1995 Phys. Rev. E 52 3936
[18] Kurlyandskaya G V, Sanchez M L, Hernando B, Prida V M, Gorria P and Tejedor M 2003 Appl. Phys. Lett. 82 3053
[19] Adrian M and Helseth L E 2008 Phys. Rev. E 77 021403
[20] Chung S H, Hoffmann A, Bader S D, Liu C, Kay B, Makowski L and Chen L 2004 Appl. Phys. Lett. 85 2791
[21] Skjeltorp A T 1983 Phys. Rev. Lett. 51 2306
[22] Toussaint R, Akselvoll J, Helgesen G, Skjeltorp A T and Flekky E G 2004 Phys. Rev. E 69 011407
[23] Helgesen G, Pieranski P and Skjeltorp A T 1990 Phys. Rev. A 42 7271
[24] Pinheiro F A, Martinez A S and Sampaio L C 2000 Phys. Rev. Lett. 84 1435
[25] Rao G N, Yao Y D, Chen Y L, Wu K T and Chen J W 2005 Phys. Rev. E 72 031408
[26] Ivey M, Liu J, Zhu Y and Cutillas S 2000 Phys. Rev. E 63 011403
[27] Kellner R R and K"ohler W 2005 J. Appl. Phys. 97 034910
[28] Martin J E, Hill K M and Tigges C P 1999 Phys. Rev. E 59 5676
[29] Laskar J M, Philip J and Raj B 2009 Phys. Rev. E 80 041401 endfootnotesize
[1] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[2] Serrated magnetic properties in metallic glass by thermal cycle
Myong-Chol Ri(李明哲), Sajad Sohrabi, Da-Wei Ding(丁大伟), Bang-Shao Dong(董帮少), Shao-Xiong Zhou(周少雄), Wei-Hua Wang(汪卫华). Chin. Phys. B, 2017, 26(6): 066101.
[3] All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding
Chen Yao-Fei (陈耀飞), Han Qun (韩群), Liu Tie-Gen (刘铁根). Chin. Phys. B, 2015, 24(1): 014214.
[4] Tunable magneto–optic modulation based on magnetically responsive nanostructured magnetic fluid
Bai Xue-Kun(白学坤),Pu Sheng-Li(卜胜利), Wang Lun-Wei(王伦唯), Wang Xiang(王响), Yu Guo-Jun(于国君), and Ji Hong-Zhu(纪红柱) . Chin. Phys. B, 2011, 20(10): 107501.
[5] Polydispersity effects on the magnetization of diluted ferrofluids: a lognormal analysis
Wang Xu-Fei(王旭飞) and Shi Li-Qun(施立群). Chin. Phys. B, 2010, 19(10): 107502.
[6] Correlation of magnetic anisotropy with dielectric anisotropy in fluorinated phenyl bicyclohexane liquid crystal
Ma Heng(马恒), Onnagawa Hiroyoshi, Sugimori Sigeru, and Toriyama Kazuhisa. Chin. Phys. B, 2010, 19(7): 076104.
[7] Simulation of natural convection under high magnetic field by means of the thermal lattice Boltzmann method
Zhong Cheng-Wen(钟诚文), Xie Jian-Fei(解建飞), Zhuo Cong-Shan(卓从山), Xiong Sheng-Wei(熊生伟), and Yin Da-Chuan(尹大川). Chin. Phys. B, 2009, 18(10): 4083-4093.
[8] INFLUENCE OF IN-PLANE FIELD ON THE STABILITY OF VERTICAL BLOCH LINE CHAINS IN HARD DOMAINS OF GARNET BUBBLE FILMS
HAN BAO-SHAN (韩宝善), MENG GUANG-QING (孟广庆), NIE XIANG-FU (聂向富), TANG GUI-DE (唐贵德), SUN HUI-YUAN (孙会元), GUO GE-XIN (郭革新). Chin. Phys. B, 1996, 5(8): 614-619.
No Suggested Reading articles found!