Please wait a minute...
Chinese Physics, 2006, Vol. 15(9): 1932-1934    DOI: 10.1088/1009-1963/15/9/005
GENERAL Prev   Next  

Stability with respect to partial variables for Birkhoff systems

Mei Feng-Xiang(梅凤翔), Wu Hui-Bin(吴惠彬), Shang Mei(尚玫), and Zhang Yong-Fa(张永发)
Faculty of Science, Beijing Institute of Technology, Beijing 100081,China
Abstract  In this paper, the stability with respect to partial variables for the Birkhoff system is studied. By transplanting the results of the partial stability for general systems to the Birkhoff system and constructing a suitable Liapunov function, the partial stability of the system can be achieved. Finally, two examples are given to illustrate the application of the results.
Keywords:  Birkhoff system      partial stability      Liapunov function  
Received:  28 February 2006      Revised:  19 May 2006      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.10.Yn (Matrix theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10572021) and the Doctoral Program Foun-\linebreak \makebox[1.6mm]{dation of Institution of Higher Education, China (Grant No 20040007022).

Cite this article: 

Mei Feng-Xiang(梅凤翔), Wu Hui-Bin(吴惠彬), Shang Mei(尚玫), and Zhang Yong-Fa(张永发) Stability with respect to partial variables for Birkhoff systems 2006 Chinese Physics 15 1932

[1] Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry
Luo Yi-Ping(罗一平) and Fu Jin-Li(傅景礼). Chin. Phys. B, 2011, 20(2): 021102.
[2] Stability for manifolds of equilibrium states of generalized Birkhoff system
Li Yan-Min(李彦敏) and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2010, 19(8): 080302.
[3] A generalized Mei conserved quantity and Mei symmetry of Birkhoff system
Wang Peng(王鹏), Fang Jian-Hui(方建会), and Wang Xian-Ming(王先明). Chin. Phys. B, 2009, 18(4): 1312-1315.
[4] The discrete variational principle and the first integrals of Birkhoff systems
Zhang Hong-Bin(张宏彬), Chen Li-Qun(陈立群), Gu Shu-Long(顾书龙), and Liu Chuan-Zhang(柳传长). Chin. Phys. B, 2007, 16(3): 582-587.
[5] A symmetry and a conserved quantity for the Birkhoff system
Mei Feng-Xiang(梅凤翔), Gang Tie-Qiang(冮铁强), and Xie Jia-Fang(解加芳). Chin. Phys. B, 2006, 15(8): 1678-1681.
[6] First integrals and stability of second-order differential equations
Xu Xue-Jun (许学军), Mei Feng-Xiang (梅凤翔). Chin. Phys. B, 2006, 15(6): 1134-1136.
[7] Closed orbits and limit cycles of second-order autonomous Birkhoff systems
Chen Xiang-Wei (陈向炜). Chin. Phys. B, 2003, 12(6): 586-589.
[8] Lie symmetries and conserved quantities of Birkhoff systems with unilateral constraints
Zhang Hong-Bin (张宏彬), Gu Shu-Long (顾书龙). Chin. Phys. B, 2002, 11(8): 765-770.
[9] Theory of symmetry for a rotational relativistic Birkhoff system
Luo Shao-Kai (罗绍凯), Chen Xiang-Wei (陈向炜), Guo Yong-Xin (郭永新). Chin. Phys. B, 2002, 11(5): 429-436.
[10] Chaos in the second-order autonomous Birkhoff system with a heteroclinic circle
Chen Xiang-Wei (陈向炜). Chin. Phys. B, 2002, 11(5): 441-444.
[11] EFFECTS OF CONSTRAINTS ON LIE SYMMETRIES AND CONSERVED QUANTITIES OF A BIRKHOFF SYSTEM
Zhang Rui-chao (张睿超), Chen Xiang-wei (陈向炜), Mei Feng-xiang (梅凤翔). Chin. Phys. B, 2001, 10(1): 12-16.
No Suggested Reading articles found!