Abstract A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low ``temperatures'' of the working substances, the maximum cooling rate versus the ratio between high and low ``magnetic fields'' and the ``temperature'' ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-$J$ systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.
Received: 02 February 2005
Revised: 06 September 2005
Accepted manuscript online:
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10465003) and the Natural Science Foundation of Jiangxi Province, China (Grant No 0412011).
Cite this article:
He Ji-Zhou (何济洲), Ouyang Wei-Pin (欧阳微频), Wu Xin (伍歆) Performance of an irreversible quantum refrigeration cycle 2006 Chinese Physics 15 53
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.