Please wait a minute...
Chinese Physics, 2004, Vol. 13(12): 2008-2012    DOI: 10.1088/1009-1963/13/12/006
GENERAL Prev   Next  

A general mapping approach and new travelling wave solutions to the general variable coefficient KdV equation

Zhu Jia-Min (朱加民)a, Zheng Chun-Long (郑春龙)ab, Ma Zheng-Yi (马正义)a
a Department of Physics, Lishui College, Lishui 323000, China; b Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  A general mapping deformation method is applied to a generalized variable coefficient KdV equation. Many new types of exact solutions, including solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions and other exact excitations are obtained by the use of a simple algebraic transformation relation between the generalized variable coefficient KdV equation and a generalized cubic nonlinear Klein-Gordon equation.
Keywords:  generalized variable coefficient KdV equation      general mapping approach      travelling wave solution  
Received:  01 April 2004      Revised:  23 June 2004      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.30.Sa (Functional analysis)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No 100039).

Cite this article: 

Zhu Jia-Min (朱加民), Zheng Chun-Long (郑春龙), Ma Zheng-Yi (马正义) A general mapping approach and new travelling wave solutions to the general variable coefficient KdV equation 2004 Chinese Physics 13 2008

[1] Singular solitons and other solutions to a couple of nonlinear wave equations
Mustafa Inc, Esma Ulutaş, Anjan Biswas. Chin. Phys. B, 2013, 22(6): 060204.
[2] Applications of the first integral method to nonlinear evolution equations
Filiz Tacscan and Ahmet Bekir . Chin. Phys. B, 2010, 19(8): 080201.
[3] Travelling solitary wave solutions for the generalized Burgers--Huxley equation with nonlinear terms of any order
Deng Xi-Jun(邓习军), Yan Zi-Zong(燕子宗), and Han Li-Bo(韩立波). Chin. Phys. B, 2009, 18(8): 3169-3173.
[4] The ($\omega/g$)-expansion method and its application to Vakhnenko equation
Li Wen-An(李文安), Chen Hao(陈浩), and Zhang Guo-Cai(张国才). Chin. Phys. B, 2009, 18(2): 400-404.
[5] Multi-symplectic method for generalized fifth-order KdV equation
Hu Wei-Peng (胡伟鹏), Deng Zi-Chen (邓子辰). Chin. Phys. B, 2008, 17(11): 3923-3929.
[6] A new variable coefficient algebraic method and non-travelling wave solutions of nonlinear equations
Lu Bin (陆 斌), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2008, 17(11): 3974-3984.
[7] The classification of travelling wave solutions and superposition of multi-solutions to Camassa-- Holm equation with dispersion
Liu Cheng-Shi(刘成仕). Chin. Phys. B, 2007, 16(7): 1832-1837.
[8] Linear superposition method for (2+1)-dimensional nonlinear wave equations
Lin Ji (林机), Wang Rui-Min (王瑞敏), Ye Li-Jun (叶丽军). Chin. Phys. B, 2006, 15(4): 665-670.
[9] New exact solutions of nonlinear Klein--Gordon equation
Zheng Qiang (郑强), Yue Ping (岳萍), Gong Lun-Xun (龚伦训). Chin. Phys. B, 2006, 15(1): 35-38.
[10] Exact travelling wave solutions for (1+1)-dimensional dispersive long wave equation
Liu Cheng-Shi (刘成仕). Chin. Phys. B, 2005, 14(9): 1710-1715.
[11] Hyperbolic function method for solving nonlinear differential-different equations
Zhu Jia-Min (朱加民). Chin. Phys. B, 2005, 14(7): 1290-1295.
[12] New families of non-travelling wave solutions to the (2+1)-dimensional modified dispersive water-wave system
Li De-Sheng (李德生), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2004, 13(9): 1377-1381.
[13] A series of new double periodic solutions to a (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation
Chen Yong (陈勇), Wang Qi (王琪). Chin. Phys. B, 2004, 13(11): 1796-1800.
[14] Explicit and exact travelling plane wave solutions of the (2+1)-dimensional Boussinesq equation
Huang Wen-Hua (黄文华), Jin Mei-Zhen (金美贞). Chin. Phys. B, 2003, 12(4): 361-364.
[15] NEW EXPLICIT AND EXACT TRAVELLING WAVE SOLUTIONS FOR A COMPOUND KdV-BURGERS EQUATION
Xia Tie-cheng (夏铁成), Zhang Hong-qing (张鸿庆), Yan Zhen-ya (闫振亚). Chin. Phys. B, 2001, 10(8): 694-697.
No Suggested Reading articles found!