Please wait a minute...
Chinese Physics, 2004, Vol. 13(1): 5-10    DOI: 10.1088/1009-1963/13/1/002
GENERAL Prev   Next  

Extended Jacobi elliptic function method and its applications to (2+1)﹣dimensional dispersive long-wave equation

Chen Yong (陈勇)a)b)c) †, Li Biao(李彪)b)a), and Zhang Hong-Qing(张鸿庆)b)c)
a) Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China; b) Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China; c) Key Laboratory of Mathematics and Mechanization, Chinese Academy of Sciences, Beijing 100080, China
Abstract  An extended Jacobi elliptic function method is proposed for constructing the exact double periodic solutions of nonlinear partial differential equations (PDEs) in a unified way. It is shown that these solutions exactly degenerate to the many types of soliton solutions in a limited condition. The Wu-Zhang equation (which describes the (2+1)﹣dimensional dispersive long wave) is investigated by this means and more formal double periodic solutions are obtained.
Keywords:  Jacobi elliptic function      double periodic solutions      solitary wave solutions  
Received:  12 May 2002      Revised:  27 May 2003      Accepted manuscript online: 
PACS:  0340K  
  0290  
  0220  
  0365G  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10072013), and the State Key Development Program for Basic Research of China (Grant No G1998030600).

Cite this article: 

Chen Yong (陈勇), Li Biao(李彪), and Zhang Hong-Qing Extended Jacobi elliptic function method and its applications to (2+1)﹣dimensional dispersive long-wave equation 2004 Chinese Physics 13 5

[1] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[2] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[3] Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates
Yao Shu-Fang (姚淑芳), Li Qiu-Yan(李秋艳), and Li Zai-Dong(李再东) . Chin. Phys. B, 2011, 20(11): 110307.
[4] Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method
Zhang Huan-Ping(张焕萍), Li Biao(李彪), and Chen Yong(陈勇). Chin. Phys. B, 2010, 19(6): 060302.
[5] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei(吴晓飞), Zhu Jia-Min(朱加民), and Ma Zheng-Yi(马正义). Chin. Phys. B, 2007, 16(8): 2159-2166.
[6] New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov--Kuzentsov equation
Taogetusang (套格图桑), Sirendaoreji. Chin. Phys. B, 2006, 15(6): 1143-1148.
[7] The Jacobi elliptic function-like exact solutions to two kinds of KdV equations with variable coefficients and KdV equation with forcible term
Taogetusang(套格图桑) and Sirendaoerji(斯仁到尔吉). Chin. Phys. B, 2006, 15(12): 2809-2818.
[8] Construction of doubly-periodic solutions to nonlinear partial differential equations using improved Jacobi elliptic function expansion method and symbolic computation
Zhao Xue-Qin(赵雪芹), Zhi Hong-Yan(智红燕), and Zhang Hong-Qing(张鸿庆). Chin. Phys. B, 2006, 15(10): 2202-2209.
[9] New exact solutions of nonlinear Klein--Gordon equation
Zheng Qiang (郑强), Yue Ping (岳萍), Gong Lun-Xun (龚伦训). Chin. Phys. B, 2006, 15(1): 35-38.
[10] Applications of F-expansion method to the coupled KdV system
Li Bao-An (李保安), Wang Ming-Liang (王明亮). Chin. Phys. B, 2005, 14(9): 1698-1706.
[11] Exact solutions for the coupled Klein--Gordon--Schr?dinger equations using the extended F-expansion method
He Hong-Sheng (何红生), Chen Jiang (陈江), Yang Kong-Qing (杨孔庆). Chin. Phys. B, 2005, 14(10): 1926-1931.
[12] A series of new double periodic solutions to a (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation
Chen Yong (陈勇), Wang Qi (王琪). Chin. Phys. B, 2004, 13(11): 1796-1800.
[13] The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation
Zhang Jin-Liang (张金良), Ren Dong-Feng (任东锋), Wang Ming-Liang (王明亮), Wang Yue-Ming (王跃明), Fang Zong-De (方宗德). Chin. Phys. B, 2003, 12(8): 825-830.
[14] New periodic solutions to a generalized Hirota-Satsuma coupled KdV system
Yan Qing-You (闫庆友), Zhang Yu-Feng (张玉峰), Wei Xiao-Peng (魏小鹏). Chin. Phys. B, 2003, 12(2): 131-135.
[15] The periodic wave solutions for two systems of nonlinear wave equations
Wang Ming-Liang (王明亮), Wang Yue-Ming (王跃明), Zhang Jin-Liang (张金良). Chin. Phys. B, 2003, 12(12): 1341-1348.
No Suggested Reading articles found!