Please wait a minute...
Chinese Physics, 2001, Vol. 10(2): 87-96    DOI: 10.1088/1009-1963/10/2/301
GENERAL   Next  

HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELS FROM THE REAL NONLINEAR EVOLUTION EQUATIONS

Ruan Hang-yu (阮航宇)ab, Chen Yi-xin (陈一新)b
a Institute of Modern Physics, Ningbo University, Ningbo 315211, China; b Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
Abstract  A conformal invariant asymptotic expansion approach to solve any nonlinear integrable and nonintegrable models with any dimension is proposed. Many new Painlevé integrable models with the same dimension can be obtained at the same time. Taking the (2+1)-dimensional KdV-Burgers (KdVB) equation, (3+1)-dimensional Zabolotskaya-Khokhlov and Kudomtsev-Petviashvili (ZKKP) equation as concrete examples, we obtain some new higher dimensional conformal invariant models with Painlevé property and the approximate solutions of these models. In certain special cases, some of the approximate solutions become exact.
Keywords:  higher dimension      conformal invariance      ZKKP equation  
Received:  04 June 2000      Accepted manuscript online: 
PACS:  02.10.-v (Logic, set theory, and algebra)  
  02.30.-f (Function theory, analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.19875041), and by the Natural Science Foundation of Zhejiang Province, China (Grant No.100033).

Cite this article: 

Ruan Hang-yu (阮航宇), Chen Yi-xin (陈一新) HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELS FROM THE REAL NONLINEAR EVOLUTION EQUATIONS 2001 Chinese Physics 10 87

[1] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[2] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[3] Conformal invariance and a kind of Hojman conserved quantity of the Nambu system
Li Yan(李燕),Fang Jian-Hui(方建会),and Zhang Ke-Jun(张克军). Chin. Phys. B, 2011, 20(3): 030201.
[4] Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry
Luo Yi-Ping(罗一平) and Fu Jin-Li(傅景礼). Chin. Phys. B, 2011, 20(2): 021102.
[5] Conformal invariance and Hojman conserved quantities for holonomic systems with quasi-coordinates
Luo Yi-Ping(罗一平) and Fu Jing-Li(傅景礼). Chin. Phys. B, 2010, 19(9): 090303.
[6] Conformal invariance and conserved quantities of Appell systems under second-class Mei symmetry
Luo Yi-Ping(罗一平) and Fu Jing-Li(傅景礼). Chin. Phys. B, 2010, 19(9): 090304.
[7] Conformal invariance and conserved quantities of a general holonomic system with variable mass
Xia Li-Li(夏丽莉) and Cai Jian-Le(蔡建乐). Chin. Phys. B, 2010, 19(4): 040302.
[8] Conformal invariance and conserved quantities of dynamical system of relative motion
Chen Xiang-Wei(陈向炜), Zhao Yong-Hong(赵永红), and Li Yan-Min(李彦敏). Chin. Phys. B, 2009, 18(8): 3139-3144.
[9] Conformal invariance and conserved quantities of general holonomic systems in phase space
Xia Li-Li(夏丽莉), Cai Jian-Le(蔡建乐), and Li Yuan-Cheng(李元成). Chin. Phys. B, 2009, 18(8): 3158-3162.
[10] Conformal invariance and Hojman conserved quantities of canonical Hamilton systems
Liu Chang(刘畅), Liu Shi-Xing(刘世兴), Mei Feng-Xiang(梅凤翔), and Guo Yong-Xin(郭永新). Chin. Phys. B, 2009, 18(3): 856-860.
[11] Conformal invariance and conserved quantities of non-conservative Lagrange systems by point transformations
Liu Chang(刘畅), Mei Feng-Xiang(梅凤翔), and Guo Yong-Xin(郭永新). Chin. Phys. B, 2009, 18(2): 395-399.
[12] Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanical systems in event space
Zhang Yi(张毅) . Chin. Phys. B, 2009, 18(11): 4636-4642.
[13] Conformal invariance and generalized Hojman conserved quantities of mechanico-electrical systems
Li Yuan-Cheng(李元成), Xia Li-Li(夏丽莉), and Wang Xiao-Ming(王小明) . Chin. Phys. B, 2009, 18(11): 4643-4649.
[14] Conformal invariance and conserved quantity of third-order Lagrange equations for non-conserved mechanical systems
Zhang Ming-Jiang(张明江), Fang Jian-Hui(方建会), Lu Kai(路凯), Zhang Ke-Jun(张克军), and Li Yan(李燕). Chin. Phys. B, 2009, 18(11): 4650-4656.
[15] Conformal invariance and conserved quantity of Hamilton systems
Cai Jian-Le(蔡建乐), Luo Shao-Kai(罗绍凯), and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2008, 17(9): 3170-3174.
No Suggested Reading articles found!