Please wait a minute...
Chinese Physics, 2001, Vol. 10(2): 103-108    DOI: 10.1088/1009-1963/10/2/303
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

SUPERSYMMETRIC SU(1|2) GAUDIN MODEL

Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏)
Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  In this paper, we propose a supersymmetric SU(1|2) Gaudin model and have derived its eigenvalues. We also present the well-defined eigenstates through the quasi-classical limit of the eigenstates in the supersymmetric t-J model.
Keywords:  Gaudin model      quantum determinant      supersymmetric t-J model  
Received:  02 July 2000      Revised:  09 September 2000      Accepted manuscript online: 
PACS:  11.30.Pb (Supersymmetry)  
  02.10.Ud (Linear algebra)  
  12.60.Jv (Supersymmetric models)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Science Foundation of China (Grant No. 19975036).

Cite this article: 

Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏) SUPERSYMMETRIC SU(1|2) GAUDIN MODEL 2001 Chinese Physics 10 103

[1] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[2] TRIGONOMETRIC $SU(N)$ GAUDIN MODEL
Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏). Chin. Phys. B, 2001, 10(10): 924-928.
No Suggested Reading articles found!