Please wait a minute...
Chinese Physics, 2001, Vol. 10(10): 924-928    DOI: 10.1088/1009-1963/10/10/308
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

TRIGONOMETRIC $SU(N)$ GAUDIN MODEL

Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏)
Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  In this paper, we obtain the eigenstates and the eigenvalues of the Hamiltonians of the trigonometric $SU(N)$ Gaudin model based on the quasi-classical limit of the trigonometric $SU(N)$ chain with the periodic boundary condition. By using the quantum inverse scattering method, we also obtain the eigenvalues of the generating function of the trigonometric $SU(N)$ Gaudin model.
Keywords:  Gaudin model      quantum determinant      trigonometric SU(N) chain  
Received:  05 March 2001      Revised:  20 May 2001      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Sq (Semiclassical theories and applications)  
  02.10.Ud (Linear algebra)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 19975036).

Cite this article: 

Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏) TRIGONOMETRIC $SU(N)$ GAUDIN MODEL 2001 Chinese Physics 10 924

[1] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[2] SUPERSYMMETRIC SU(1|2) GAUDIN MODEL
Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏). Chin. Phys. B, 2001, 10(2): 103-108.
No Suggested Reading articles found!