Please wait a minute...
Chinese Physics, 2001, Vol. 10(10): 924-928    DOI: 10.1088/1009-1963/10/10/308
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

TRIGONOMETRIC SU(N) GAUDIN MODEL

Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏)
Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  In this paper, we obtain the eigenstates and the eigenvalues of the Hamiltonians of the trigonometric SU(N) Gaudin model based on the quasi-classical limit of the trigonometric SU(N) chain with the periodic boundary condition. By using the quantum inverse scattering method, we also obtain the eigenvalues of the generating function of the trigonometric SU(N) Gaudin model.
Keywords:  Gaudin model      quantum determinant      trigonometric SU(N) chain  
Received:  05 March 2001      Revised:  20 May 2001      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Sq (Semiclassical theories and applications)  
  02.10.Ud (Linear algebra)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 19975036).

Cite this article: 

Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏) TRIGONOMETRIC SU(N) GAUDIN MODEL 2001 Chinese Physics 10 924

[1] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[2] SUPERSYMMETRIC SU(1|2) GAUDIN MODEL
Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏). Chin. Phys. B, 2001, 10(2): 103-108.
No Suggested Reading articles found!