Due to the fault of the first author, this article entitled “The coexistence of ferroelectricity and ferromagnetism in Mn-doped BaTiO3 thin films”, published in “Chinese Physics B”, 2011,Vol.20, Issue 12, Article No. 127701, has been found to copy from the article entitled“Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films”, published in “Journal of Applied Physics”, 2011,Vol.109, Issue 8, article No. 084105. So the above article in “Chinese Physics B” has been withdrawn from the publication.
5-at% Mn-doped and undoped BaTiO3 thin films have been grown under different oxygen partial pressures by Pulsed Laser Deposition (PLD) on platinum-coated sapphire substrates. X-ray diffraction (XRD) measurements for all the thin films reveal a similar polycrystalline single-phase perovskite structure. Ferroelectricity is observed in the Mn-doped and undoped BaTiO3 thin films grown under relatively high oxygen partial pressure. Ferromagnetic coupling of the Mn dopant ions, on the other hand, is only seen in Mn-doped BaTiO3 thin films prepared under low oxygen partial pressure in a wide temperature range from 5 K to 300 K, and is attributed to the enhanced exchange coupling between Mn dopants and electrons at oxygen vacancies. Our results show that the leakage current is decreased with the doped Mn, but increases the dielectric loss and decreases the dielectric constant, and the ferroelectricity is impaired. To produce ferromagnetism, oxygen vacancies are necessary, which unfortunately increase the leakage current. This confirms that the mutual interplay between the ferroelectricity and ferromagnetism can be tuned by exchange coupling of the doped-Mn and oxygen vacancies in the BaTiO3 thin films.