中国物理B ›› 2016, Vol. 25 ›› Issue (8): 87201-087201.doi: 10.1088/1674-1056/25/8/087201
• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇 下一篇
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平)
Xiao-Chuan Deng(邓小川)1, Xi-Xi Chen(陈茜茜)1, Cheng-Zhan Li(李诚瞻)2, Hua-Jun Shen(申华军)3, Jin-Ping Zhang(张金平)1
摘要: The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study. Three geometrical parameters, i.e., mesa height, mesa angle and mesa bottom corner, are investigated by numerical simulation. The simulation results show that a deep mesa height, a small mesa angle and a smooth mesa bottom (without sub-trench) could contribute to a high breakdown voltage due to a smooth and uniform surface electric field distribution. Moreover, an optimized mesa structure without sub-trench (mesa height of 2.2 μm and mesa angle of 20°) is experimentally demonstrated. A maximum reverse blocking voltage of 4 kV and a forward voltage drop of 3.7 V at 100 A/cm2 are obtained from the fabricated diode with a 30-μm thick N- epi-layer, corresponding to 85% of the ideal parallel-plane value. The blocking characteristic as a function of the JTE dose is also discussed for the PiN rectifiers with and without interface charge.
中图分类号: (High-field and nonlinear effects)