中国物理B ›› 2022, Vol. 31 ›› Issue (2): 28502-028502.doi: 10.1088/1674-1056/ac1331
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀)†
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀)†
摘要: The effects of radiation on 3CG110 PNP bipolar junction transistors (BJTs) are characterized using 50-MeV protons, 40-MeV Si ions, and 1-MeV electrons. In this paper, electrical characteristics and deep level transient spectroscopy (DLTS) are utilized to analyze radiation defects induced by ionization and displacement damage. The experimental results show a degradation of the current gain and an increase in the types of radiation defect with increasing fluences of 50-MeV protons. Moreover, by comparing the types of damage caused by different radiation sources, the characteristics of the radiation defects induced by irradiation show that 50-MeV proton irradiation can produce both ionization and displacement defects in the 3CG110 PNP BJTs, in contrast to 40-MeV Si ions, which mainly generate displacement defects, and 1-MeV electrons, which mainly produce ionization defects. This work provides direct evidence of a synergistic effect between the ionization and displacement defects caused in PNP BJTs by 50-MeV protons.
中图分类号: (Bipolar transistors)