中国物理B ›› 2021, Vol. 30 ›› Issue (10): 107801-107801.doi: 10.1088/1674-1056/abf130
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇)†
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇)†
摘要: Based on the transport theory and the polarization relaxation model, the effects of hydrogen and hydroxyl passivation on the conductivity and dielectric properties of silicon carbide nanowires (SiCNWs) with different sizes are numerically simulated. The results show that the variation trend of conductivity and band gap of passivated SiCNWs are opposite to the scenario of the size effect of bare SiCNWs. Among the influencing factors of conductivity, the carrier concentration plays a leading role. In the dielectric properties, the bare SiCNWs have a strong dielectric response in the blue light region, while passivated SiCNWs show a more obvious dielectric response in the far ultraviolet-light region. In particular, hydroxyl passivation produces a strong dielectric relaxation in the microwave band, indicating that hydroxyl passivated SiCNWs have a wide range of applications in electromagnetic absorption and shielding.
中图分类号: (Nanowires)