中国物理B ›› 2017, Vol. 26 ›› Issue (3): 38504-038504.doi: 10.1088/1674-1056/26/3/038504
所属专题: TOPICAL REVIEW — 2D materials: physics and device applications
• TOPICAL REVIEW—2D materials: physics and device applications • 上一篇 下一篇
Xia Wei(魏侠), Fa-Guang Yan(闫法光), Chao Shen(申超), Quan-Shan Lv(吕全山), Kai-You Wang(王开友)
收稿日期:
2016-12-20
修回日期:
2017-01-21
出版日期:
2017-03-05
发布日期:
2017-03-05
通讯作者:
Kai-You Wang
E-mail:kywang@semi.ac.cn
基金资助:
Project supported by the National Basic Research Program of China (Grant No. 2014CB643903), the National Natural Science Foundation of China (Grant Nos. 61225021, 11474272, 11174272, and 11404324), and K. C. Wong Education Foundation.
Xia Wei(魏侠)1, Fa-Guang Yan(闫法光)1, Chao Shen(申超)1, Quan-Shan Lv(吕全山)1, Kai-You Wang(王开友)1,2
Received:
2016-12-20
Revised:
2017-01-21
Online:
2017-03-05
Published:
2017-03-05
Contact:
Kai-You Wang
E-mail:kywang@semi.ac.cn
Supported by:
Project supported by the National Basic Research Program of China (Grant No. 2014CB643903), the National Natural Science Foundation of China (Grant Nos. 61225021, 11474272, 11174272, and 11404324), and K. C. Wong Education Foundation.
摘要:
Transition metal dichalcogenides (TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible to near infrared, but also can be stacked together regardless of lattice mismatch like other two-dimensional (2D) materials. Along with the studies on intrinsic properties of TMDCs, the junctions based on TMDCs become more and more important in applications of photodetection. The junctions have shown many exciting possibilities to fully combine the advantages of TMDCs, other 2D materials, conventional and organic semiconductors together. Early studies have greatly enriched the application of TMDCs in photodetection. In this review, we investigate the efforts in photodetectors based on the junctions of TMDCs and analyze the properties of those photodetectors. Homojunctions based on TMDCs can be made by surface chemical doping, elemental doping and electrostatic gating. Heterojunction formed between TMDCs/2D materials, TMDCs/conventional semiconductors and TMDCs/organic semiconductor also deserve more attentions. We also compare the advantages and disadvantages of different junctions, and then give the prospects for the development of junctions based on TMDCs.
中图分类号: (Junction diodes)
魏侠, 闫法光, 申超, 吕全山, 王开友. Photodetectors based on junctions of two-dimensional transition metal dichalcogenides[J]. 中国物理B, 2017, 26(3): 38504-038504.
Xia Wei(魏侠), Fa-Guang Yan(闫法光), Chao Shen(申超), Quan-Shan Lv(吕全山), Kai-You Wang(王开友). Photodetectors based on junctions of two-dimensional transition metal dichalcogenides[J]. Chin. Phys. B, 2017, 26(3): 38504-038504.
[1] | Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S A, Grigorieva I and Firsov A 2004 Science 306 666 |
[2] | Novoselov K, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S and Firsov A 2005 Nature 438 197 |
[3] | Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451 |
[4] | Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385 |
[5] | Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech. 4 839 |
[6] | Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297 |
[7] | Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L and Muller D 2013 Science 342 614 |
[8] | Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J and Ismach A F 2013 ACS Nano 7 2898 |
[9] | Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766 |
[10] | Koski K J and Cui Y 2013 ACS Nano 7 3739 |
[11] | Das S, Robinson J A, Dubey M, Terrones H and Terrones M 2015 Annu. Rev. Mater. Res. 45 1 |
[12] | Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 |
[13] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147 |
[14] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699 |
[15] | Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 |
[16] | Wilson J and Yoffe A 1969 Adv. Phys. 18 193 |
[17] | Frindt R F and Yoffe A D 1963 Pro. R. Soc. London A: Mathematical, Physical and Engineering Sciences 273 69 |
[18] | Cao Y F, Cai K M, Li L J, Lu W J, Sun Y P and Wang K Y 2014 Chin. Phys. Lett. 31 077203 |
[19] | Costanzo D, Jo S, Berger H and Morpurgo A F 2016 Nat. Nanotech. 11 339 |
[20] | Ayari A, Cobas E, Ogundadegbe O and Fuhrer M S 2007 J. Appl. Phys. 101 14507 |
[21] | Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 |
[22] | Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111 |
[23] | Yun W S, Han S, Hong S C, Kim I G and Lee J 2012 Phys. Rev. B 85 033305 |
[24] | Liu Z, Lau S P and Yan F 2015 Chem. Soc. Rev. 44 5638 |
[25] | Geim A K and Grigorieva I V 2013 Nature 499 419 |
[26] | Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74 |
[27] | Larentis S, Fallahazad B and Tutuc E 2012 Appl. Phys. Lett. 101 223104 |
[28] | Wu C C, Jariwala D, Sangwan V K, Marks T J, Hersam M C and Lauhon L J 2013 J. Phys. Chem. Lett. 4 2508 |
[29] | Das S and Appenzeller J 2013 Appl. Phys. Lett. 103 103501 |
[30] | Huo N, Yang S, Wei Z, Li S S, Xia J B and Li J 2014 Sci. Rep. 4 5209 |
[31] | Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotech. 8 497 |
[32] | Wang H, Liu F, Fu W, Fang Z, Zhou W and Liu Z 2014 Nanoscale 6 12250 |
[33] | Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotech. 9 780 |
[34] | Zhang W, Wang Q, Chen Y, Wang Z and Wee A T 2016 2D Mater. 3 022001 |
[35] | Bablich A, Kataria S and Lemme M 2016 Electronics 5 13 |
[36] | Pospischil A and Mueller T 2016 Appl. Sci. 6 78 |
[37] | Farmer D B, Golizadeh-Mojarad R, Perebeinos V, Lin Y-M, Tulevski G S, Tsang J C and Avouris P 2009 Nano Lett. 9 388 |
[38] | Peters E C, Lee E J, Burghard M and Kern K 2010 Appl. Phys. Lett. 97 193102 |
[39] | Lemme M C, Koppens F H, Falk A L, Rudner M S, Park H, Levitov L S and Marcus C M 2011 Nano Lett. 11 4134 |
[40] | Groenendijk D J, Buscema M, Steele G A, Michaelis de Vasconcellos S, Bratschitsch R, van der Zant H S and Castellanos-Gomez A 2014 Nano Lett. 14 5846 |
[41] | Baugher B W, Churchill H O, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotech. 9 262 |
[42] | Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotech. 9 268 |
[43] | Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotech. 9 257 |
[44] | Buscema M, Groenendijk D J, Steele G A, van der Zant H S and Castellanos-Gomez A 2014 Nat. Commun. 5 4651 |
[45] | Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J and Javey A 2013 Nano Lett. 13 1991 |
[46] | Choi M S, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T and Yoo W J 2014 ACS Nano 8 9332 |
[47] | Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P, Tieckelmann R, Tsai W and Hobbs C 2014 Nano Lett. 14 6275 |
[48] | Lei S, Wang X, Li B, Kang J, He Y, George A, Ge L, Gong Y, Dong P and Jin Z 2016 Nat. Nanotech. 11 465 |
[49] | Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C and Sun Y 2014 Nano Lett. 14 6976 |
[50] | Jin Y, Keum D H, An S J, Kim J, Lee H S and Lee Y H 2015 Adv. Mater. 27 5534 |
[51] | Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788 |
[52] | Wi S, Kim H, Chen M, Nam H, Guo L J, Meyhofer E and Liang X 2014 ACS Nano 8 5270 |
[53] | Choi W, Cho M Y, Konar A, Lee J H, Cha G B, Hong S C, Kim S, Kim J, Jena D and Joo J 2012 Adv. Mater. 24 5832 |
[54] | Kim E, Ko C, Kim K, Chen Y, Suh J, Ryu S G, Wu K, Meng X, Suslu A and Tongay S 2016 Adv. Mater. 28 341 |
[55] | Huo N, Yang J, Huang L, Wei Z, Li S S, Wei S H and Li J 2015 Small 11 5430 |
[56] | Flöry N, Jain A, Bharadwaj P, Parzefall M, Taniguchi T, Watanabe K and Novotny L 2015 Appl. Phys. Lett. 107 123106 |
[57] | Esmaeili-Rad M R and Salahuddin S 2013 Sci. Rep. 3 2345 |
[58] | Lopez-Sanchez O, Dumcenco D, Charbon E and Kis A 2014 arXiv:1411.3232 [cond-mat.mes-hall] |
[59] | Lopez-Sanchez O, Alarcon Llado E, Koman V, Fontcuberta i Morral A, Radenovic A and Kis A 2014 ACS Nano 8 3042) |
[60] | Li Y, Xu C Y, Wang J Y and Zhen L 2014 Sci. Rep. 4 7186 |
[61] | Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z and Lee S T 2015 Adv. Funct. Mater. 25 2910 |
[62] | Hao L, Liu Y, Gao W, Han Z, Xue Q, Zeng H, Wu Z, Zhu J and Zhang W 2015 J. Appl. Phys. 117 114502 |
[63] | Chuang S, Kapadia R, Fang H, Chang T C, Yen W C, Chueh Y L and Javey A 2013 Appl. Phys. Lett. 102 242101 |
[64] | Xu Z, Lin S, Li X, Zhang S, Wu Z, Xu W, Lu Y and Xu S 2016 Nano Energy 23 89 |
[65] | Ruzmetov D, Zhang K, Stan G, Kalanyan B, Bhimanapati G R, Eichfeld S M, Burke R A, Shah P B, O'Regan T P and Crowne F J 2016 ACS Nano 10 3580 |
[66] | Tsai D S, Liu K K, Lien D H, Tsai M L, Kang C F, Lin C A, Li L J and He J H 2013 Acs Nano 7 3905 |
[67] | Jariwala D, Howell S L, Chen K S, Kang J, Sangwan V K, Filippone S A, Turrisi R, Marks T J, Lauhon L J and Hersam M C 2016 Nano Lett. 16 497 |
[68] | Kim K, Santos E J, Lee T H, Nishi Y and Bao Z 2015 Small 11 2037 |
[69] | Wu B, Zhao Y, Nan H, Yang Z, Zhang Y, Zhao H, He D, Jiang Z, Liu X and Li Y 2016 Nano Lett. 16 3754 |
[70] | He D, Pan Y, Nan H, Gu S, Yang Z, Wu B, Luo X, Xu B, Zhang Y and Li Y 2015 Appl. Phys. Lett. 107 183103 |
[71] | He D, Zhang Y, Wu Q, Xu R, Nan H, Liu J, Yao J, Wang Z, Yuan S and Li Y 2014 Nat. Commun. 5 5162 |
[72] | Zhang L, Yang Y, Huang H, Lyu L, Zhang H, Cao N, Xie H, Gao X, Niu D and Gao Y 2015 J. Phys. Chem. C 119 4217 |
[73] | Zheng Y J, Huang Y L, Chen Y, Zhao W, Eda G, Spataru C D, Zhang W, Chang Y H, Li L J and Chi D 2016 ACS Nano 10 2476 |
[74] | Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotech. 9 682 |
[75] | Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J and Li J 2014 Nano Lett. 14 3185 |
[76] | Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C and Heinz T F 2014 Nat. Nanotech. 9 676 |
[77] | Furchi M M, Pospischil A, Libisch F, Burgdoörfer J and Mueller T 2014 Nano Lett. 14 4785 |
[78] | Chiu M H, Li M Y, Zhang W, Hsu W T, Chang W H, Terrones M, Terrones H and Li L J 2014 ACS Nano 8 9649 |
[79] | Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F and Unal A A 2014 Proc. Natl. Acad. Sci. 111 6198 |
[80] | Chiu M H, Zhang C, Shiu H W, Chuu C P, Chen C H, Chang C Y S, Chen C H, Chou M Y, Shih C K and Li L J 2015 Nat. Commun. 6 7666 |
[81] | Nourbakhsh A, Zubair A, Dresselhaus M S and Palacios T 2016 Nano Lett. 16 1359 |
[82] | Peng B, Yu G, Liu X, Liu B, Liang X, Bi L, Deng L, Sum T C and Loh K P 2016 2D Mater. 3 025020 |
[83] | Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717 |
[84] | Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y and Wang P 2016 ACS Nano 10 3852 |
[85] | Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G and Ghimire N J 2015 Nat. Commun. 6 6242 |
[86] | Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y and Duan X 2014 Nano Lett. 14 5590 |
[87] | Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S and Li L J 2012 Adv. Mater. 24 2320 |
[88] | Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y and Zhang H 2012 Nano Lett. 12 1538 |
[89] | van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554 |
[90] | Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R and Yakobson B I 2014 Nat. Mater. 13 1135 |
[91] | Xue Y, Zhang Y, Liu Y, Liu H, Song J, Sophia J, Liu J, Xu Z Q, Xu Q and Wang Z 2016 ACS Nano 10 573 |
[92] | Choudhary N, Park J, Hwang J Y, Chung H S, Dumas K H, Khondaker S I, Choi W and Jung Y 2016 Sci. Rep. 6 25456 |
[93] | Verble J, Wietling T and Reed P 1972 Solid State Commun. 11 941 |
[94] | Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H and He J H 2015 Science 349 524 |
[95] | Tan C, Zeng Z, Huang X, Rui X, Wu X J, Li B, Luo Z, Chen J, Chen B and Yan Q 2015 Angew. Chem. 127 1861 |
[96] | Mahjouri-Samani M, Lin M W, Wang K, Lupini A R, Lee J, Basile L, Boulesbaa A, Rouleau C M, Puretzky A A and Ivanov I N 2015 Nat. Commun. 6 7749 |
[97] | Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q and Pan A 2014 Nat. Nanotech. 9 1024 |
[98] | Huang C, Wu S, Sanchez A M, Peters J J, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H and Xu X 2014 Nat. Mater. 13 1096 |
[99] | Zhang C, Chen Y, Huang J K, Wu X, Li L J, Yao W, Tersoff J and Shih C K 2016 Nat. Commun. 7 10349 |
[100] | Howell S L, Jariwala D, Wu C C, Chen K S, Sangwan V K, Kang J, Marks T J, Hersam M C and Lauhon L J 2015 Nano Lett. 15 2278 |
[101] | Avouris P, Chen Z and Perebeinos V 2007 Nat. Nanotech. 2 605 |
[102] | Koenig S P, Doganov R A, Schmidt H, Neto A C and Oezyilmaz B 2014 Appl. Phys. Lett. 104 103106 |
[103] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotech. 9 372 |
[104] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tom\'anek D and Ye P D 2014 ACS Nano 8 4033 |
[105] | Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292 |
[106] | Chen P, Zhang T, Zhang J, Xiang J, Yu H, Wu S, Lu X, Wang G, Wen F and Liu Z 2016 Nanoscale 8 3254 |
[107] | Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 |
[108] | Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L and He J H 2014 Sci. Rep. 4 3826 |
[109] | Henck H, Pierucci D, Chaste J, Naylor C H, Avila J, Balan A, Silly M G, Asensio M C, Sirotti F and Johnson A C 2016 Appl. Phys. Lett. 109 113103 |
[110] | Li B, Huang L, Zhong M, Li Y, Wang Y, Li J and Wei Z 2016 Adv. Electron. Mater. 2 1600298 |
[111] | Yang J, Huo N, Li Y, Jiang X W, Li T, Li R, Lu F, Fan C, Li B and Norgaard K 2015 Adv. Electron. Mater. 1 1500267 |
[112] | Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X and Wang K 2015 Adv. Opt. Mater. 3 1418 |
[113] | Yan F, Zhang D, Luo W, Hu P, Feng Q, Shen C, Wei X, Chang K and Wang K 2016 rXiv:1606.05469 |
[114] | Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y and Duan X 2013 Nat. Nanotech. 8 952 |
[115] | Wasala M, Zhang J, Ghosh S, Muchharla B, Malecek R, Mazumdar D, Samassekou H, Gaither-Ganim M, Morrison A and Lopez N P 2016 J. Mater. Res. 31 893 |
[116] | Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J and Watanabe K 2013 ACS Nano 7 7931 |
[117] | Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L and Ye F 2015 Nat. Nanotech. 10 534 |
[118] | Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 |
[119] | Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 |
[120] | Eginligil M, Cao B, Wang Z, Shen X, Cong C, Shang J, Soci C and Yu T 2015 Nat. Commun. 6 7636 |
[121] | Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S C and Hwang H Y 2014 Nat. Nanotech. 9 851 |
[122] | Zhang Y, Oka T, Suzuki R, Ye J and Iwasa Y 2014 Science 344 725 |
[123] | Yang S, Wang C, Ataca C, Li Y, Chen H, Cai H, Suslu A, Grossman J C, Jiang C and Liu Q 2016 ACS Appl. Mater. Inter. 8 2533 |
[124] | Gao A, Liu E, Long M, Zhou W, Wang Y, Xia T, Hu W, Wang B and Miao F 2016 Appl. Phys. Lett. 108 223501 |
[125] | Zhang W, Chiu M H, Chen C H, Chen W, Li L J and Wee A T S 2014 ACS Nano 8 8653 |
[126] | Kallatt S, Umesh G, Bhat N and Majumdar K 2016 Nanoscale 8 15213 |
[1] | Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor[J]. 中国物理B, 2023, 32(3): 37302-037302. |
[2] | Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction[J]. 中国物理B, 2023, 32(3): 37401-037401. |
[3] | Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices[J]. 中国物理B, 2023, 32(3): 38503-038503. |
[4] | Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell[J]. 中国物理B, 2023, 32(2): 28801-028801. |
[5] | Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction[J]. 中国物理B, 2023, 32(2): 27504-027504. |
[6] | Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction[J]. 中国物理B, 2023, 32(2): 20701-020701. |
[7] | Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack[J]. 中国物理B, 2023, 32(1): 18503-018503. |
[8] | Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer[J]. 中国物理B, 2023, 32(1): 18504-018504. |
[9] | Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation[J]. 中国物理B, 2023, 32(1): 16701-016701. |
[10] | Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells[J]. 中国物理B, 2022, 31(9): 98401-098401. |
[11] | Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors[J]. 中国物理B, 2022, 31(8): 86106-086106. |
[12] | Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain[J]. 中国物理B, 2022, 31(8): 87101-087101. |
[13] | Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response[J]. 中国物理B, 2022, 31(8): 88503-088503. |
[14] | Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors[J]. 中国物理B, 2022, 31(6): 68502-068502. |
[15] | Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Exciton luminescence and many-body effect of monolayer WS2 at room temperature[J]. 中国物理B, 2022, 31(5): 57803-057803. |
|