中国物理B ›› 2017, Vol. 26 ›› Issue (10): 100201-100201.doi: 10.1088/1674-1056/26/10/100201
• GENERAL • 下一篇
Jiao-Li Gong(龚姣丽), Jin-Song Liu(刘劲松), Man Zhang(张曼), Zheng Chu(褚政), Zhen-Gang Yang(杨振刚), Ke-Jia Wang(王可嘉), Jian-Quan Yao(姚建铨)
Jiao-Li Gong(龚姣丽)1,2, Jin-Song Liu(刘劲松)1, Man Zhang(张曼)1, Zheng Chu(褚政)1, Zhen-Gang Yang(杨振刚)1, Ke-Jia Wang(王可嘉)1, Jian-Quan Yao(姚建铨)1
摘要: The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Γ valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality:with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.
中图分类号: (Distribution theory and Monte Carlo studies)