中国物理B ›› 2021, Vol. 30 ›› Issue (5): 56106-056106.doi: 10.1088/1674-1056/abe9a7
所属专题: SPECIAL TOPIC — Ion beam modification of materials and applications
Yong Wang(王勇)1, Qing Liao(廖庆)2, Ming Liu(刘茗)3, Peng-Fei Zheng(郑鹏飞)3, Xinyu Gao(高新宇)1, Zheng Jia(贾政)1, Shuai Xu(徐帅)2, and Bing-Sheng Li(李炳生)2,4,†
Yong Wang(王勇)1, Qing Liao(廖庆)2, Ming Liu(刘茗)3, Peng-Fei Zheng(郑鹏飞)3, Xinyu Gao(高新宇)1, Zheng Jia(贾政)1, Shuai Xu(徐帅)2, and Bing-Sheng Li(李炳生)2,4,†
摘要: Lattice defects induced by ion implantation into SiC have been widely investigated in the decades by various techniques. One of the non-destructive techniques suitable to study the lattice defects in SiC is the optical characterization. In this work, confocal Raman scattering spectroscopy and photoluminescence spectrum have been used to study the effects of 134-keV H$_{2}^{ + }$ implantation and thermal treatment in the microstructure of 6H-SiC single crystal. The radiation-induced changes in the microstructure were assessed by integrating Raman-scattering peaks intensity and considering the asymmetry of Raman-scattering peaks. The integrated intensities of Raman scattering spectroscopy and photoluminescence spectrum decrease with increasing the fluence. The recovery of the optical intensities depends on the combination of the implantation temperature and the annealing temperature with the thermal treatment from 700 ℃ to 1100 ℃. The different characterizations of Raman scattering spectroscopy and photoluminescence spectrum are compared and discussed in this study.
中图分类号: (Physical radiation effects, radiation damage)