›› 2015, Vol. 24 ›› Issue (2): 24211-024211.doi: 10.1088/1674-1056/24/2/024211
• ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS • 上一篇 下一篇
张东亮, 成步文, 薛春来, 张旭, 丛慧, 刘智, 张广泽, 王启明
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明)
摘要: Optical gain characteristics of Ge1-xSnx are simulated systematically. With an injection carrier concentration of 5×1018/cm3 at room temperature, the maximal optical gain of Ge0.922Sn0.078 alloy (with n-type doping concentration being 5×1018/cm3) reaches 500 cm-1. Moreover, considering the free-carrier absorption effect, we find that there is an optimal injection carrier density to achieve a maximal net optical gain. A double heterostructure Ge0.554Si0.289Sn0.157/Ge0.922Sn0.078/Ge0.554Si0.289Sn0.157 short-wave infrared laser diode is designed to achieve a high injection efficiency and low threshold current density. The simulation values of the device threshold current density Jth are 6.47 kA/cm2 (temperature: 200 K, and λ =2050 nm), 10.75 kA/cm2 (temperature: 200 K, and λ =2000 nm), and 23.12 kA/cm2 (temperature: 300 K, and λ =2100 nm), respectively. The results indicate the possibility to obtain a Si-based short-wave infrared Ge1-xSnx laser.
中图分类号: (Semiconductor lasers; laser diodes)