中国物理B ›› 2018, Vol. 27 ›› Issue (10): 108201-108201.doi: 10.1088/1674-1056/27/10/108201
• INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY • 上一篇 下一篇
Guo-Jun Xu(徐国军), Chen-Xin Jin(金晨鑫), Kai-Jie Kong(孔凯捷), Xi-Xi Yang(杨西西), Zhi-Hao Yue(岳之浩), Xiao-Min Li(李晓敏), Fu-Gen Sun(孙福根), Hai-Bin Huang(黄海宾), Lang Zhou(周浪)
Guo-Jun Xu(徐国军), Chen-Xin Jin(金晨鑫), Kai-Jie Kong(孔凯捷), Xi-Xi Yang(杨西西), Zhi-Hao Yue(岳之浩), Xiao-Min Li(李晓敏), Fu-Gen Sun(孙福根), Hai-Bin Huang(黄海宾), Lang Zhou(周浪)
摘要:
In this paper, two types of silicon (Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver (Ag). The Ag-deposited n-type 1-Ω·cm Si particles (n1-Ag) and Ag-deposited n-type 0.001-Ω·cm Si particles (n0.001-Ag) are separately used as an anode material to assemble coin cells, of which the electrochemical performances are investigated. For the matching of work function between n-type 1-Ω·cm Si (n1) and Ag, n1-Ag shows discharge specific capacity of up to 683 mAh·g-1 at a current density of 8.4 A·g-1, which is 40% higher than that of n0.001-Ag. Furthermore, the resistivity of n1-Ag is lower than half that of n0.001-Ag. Due to the mismatch of work function between n-type 0.001-Ω·cm Si (n0.001) and Ag, the discharge specific capacity of n0.001-Ag is 250.2 mAh·g-1 lower than that of n1-Ag after 100 cycles.
中图分类号: (Lithium-ion batteries)