中国物理B ›› 2016, Vol. 25 ›› Issue (10): 108502-108502.doi: 10.1088/1674-1056/25/10/108502
• INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY • 上一篇 下一篇
Yun-He Guan(关云鹤), Zun-Chao Li(李尊朝), Dong-Xu Luo(骆东旭), Qing-Zhi Meng(孟庆之), Ye-Fei Zhang(张也非)
Yun-He Guan(关云鹤), Zun-Chao Li(李尊朝), Dong-Xu Luo(骆东旭), Qing-Zhi Meng(孟庆之), Ye-Fei Zhang(张也非)
摘要: A III-V heterojunction tunneling field-effect transistor (TFET) can enhance the on-state current effectively, and GaAsxSb1-x/InyGa1-yAs heterojunction exhibits better performance with the adjustable band alignment by modulating the alloy composition. In this paper, the performance of the cylindrical surrounding-gate GaAsxSb1-x/InyGa1-yAs heterojunction TFET with gate-drain underlap is investigated by numerical simulation. We validate that reducing drain doping concentration and increasing gate-drain underlap could be effective ways to reduce the off-state current and subthreshold swing (SS), while increasing source doping concentration and adjusting the composition of GaAsxSb1-x/InyGa1-yAs can improve the on-state current. In addition, the resonant TFET based on GaAsxSb1-x/InyGa1-yAs is also studied, and the result shows that the minimum and average of SS reach 11 mV/decade and 20 mV/decade for five decades of drain current, respectively, and is much superior to the conventional TFET.
中图分类号: (Junction breakdown and tunneling devices (including resonance tunneling devices))