中国物理B ›› 2016, Vol. 25 ›› Issue (5): 57308-057308.doi: 10.1088/1674-1056/25/5/057308
• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇 下一篇
Gui-Chao Hu(胡贵超), Zhao Zhang(张朝), Ying Li(李营), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎)
Gui-Chao Hu(胡贵超), Zhao Zhang(张朝), Ying Li(李营), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎)
摘要: The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length.
中图分类号: (Electronic transport in nanoscale materials and structures)