中国物理B ›› 2024, Vol. 33 ›› Issue (1): 10503-10503.doi: 10.1088/1674-1056/acf9e7

• • 上一篇    下一篇

Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability

Li-Lian Huang(黄丽莲)1,2,3,†, Yan-Hao Ma(马衍昊)1,2, and Chuang Li(李创)1,2   

  1. 1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
    2 Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China;
    3 National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China
  • 收稿日期:2023-08-05 修回日期:2023-09-12 接受日期:2023-09-15 出版日期:2023-12-13 发布日期:2023-12-22
  • 通讯作者: Li-Lian Huang E-mail:lilian_huang@163.com
  • 基金资助:
    Project supported by the Heilongjiang Province Natural Science Foundation Joint Guidance Project, China (Grant No. LH2020F022) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3072022CF0801).

Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability

Li-Lian Huang(黄丽莲)1,2,3,†, Yan-Hao Ma(马衍昊)1,2, and Chuang Li(李创)1,2   

  1. 1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
    2 Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China;
    3 National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China
  • Received:2023-08-05 Revised:2023-09-12 Accepted:2023-09-15 Online:2023-12-13 Published:2023-12-22
  • Contact: Li-Lian Huang E-mail:lilian_huang@163.com
  • Supported by:
    Project supported by the Heilongjiang Province Natural Science Foundation Joint Guidance Project, China (Grant No. LH2020F022) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3072022CF0801).

摘要: Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudo-randomness. In this work, a novel five-dimensional (5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology (NIST) test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor (DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.

关键词: Hamilton conservative hyperchaotic system, symmetry, wide parameter range, hide multiple stability

Abstract: Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudo-randomness. In this work, a novel five-dimensional (5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology (NIST) test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor (DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.

Key words: Hamilton conservative hyperchaotic system, symmetry, wide parameter range, hide multiple stability

中图分类号:  (Nonlinear dynamics and chaos)

  • 05.45.-a
05.45.Pq (Numerical simulations of chaotic systems)