中国物理B ›› 2021, Vol. 30 ›› Issue (9): 97401-097401.doi: 10.1088/1674-1056/abf10b
Peng-Bin Niu(牛鹏斌)1,†, Bo-Xiang Cui(崔博翔)1, and Hong-Gang Luo(罗洪刚)2,3
Peng-Bin Niu(牛鹏斌)1,†, Bo-Xiang Cui(崔博翔)1, and Hong-Gang Luo(罗洪刚)2,3
摘要: We investigate the spin-related currents and tunnel magnetoresistance through a quantum dot, which is side-coupled with a Majorana fermion zero mode and two thermal-driven ferromagnetic electrodes. It is found that the interplay of Majorana fermion and electrodes' spin polarization can induce a nonlinear thermal-bias spin current. This interplay also decreases the total magnitude of spin or charge current, in either parallel or antiparallel configuration. In addition, a thermal-driven negative tunnel magnetoresistance is found, which is an unique feature to characterize Majorana fermion. With large temperature difference, a step phenomenon is observed in gate tuned spin-up current. When the coupling between quantum dot and topological superconductor is strong enough, this step will evolve into a linear relation, revealing Majorana fermion's robustness.
中图分类号: (Transport properties)