中国物理B ›› 2019, Vol. 28 ›› Issue (8): 87201-087201.doi: 10.1088/1674-1056/28/8/087201
• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇 下一篇
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生)
收稿日期:
2019-04-08
修回日期:
2019-05-19
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
Jia-Qi He, Yong-Sheng Wang
E-mail:jqhe@bjtu.edu.cn;yshwang@bjtu.edu.cn
基金资助:
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生)
Received:
2019-04-08
Revised:
2019-05-19
Online:
2019-08-05
Published:
2019-08-05
Contact:
Jia-Qi He, Yong-Sheng Wang
E-mail:jqhe@bjtu.edu.cn;yshwang@bjtu.edu.cn
Supported by:
摘要: The exciton dynamics in a WS2 monolayer with strain are studied by transient absorption measurements. We measure the differential transmission signal from monolayer WS2 as a function of the probe wavelength at different levels of strain applied to the sample. The differential transmission spectrum has a positive maximum value at about 614 nm and shows no significant strain dependence. By time-resolving the differential transmission signal, we find that the strain has a minimal effect on the exciton formation process. However, the exciton lifetime is significantly reduced by strain. These results provide useful information for applications of WS2 in flexible electronic and optoelectronic devices where strain is inevitable.
中图分类号: (Transition-metal compounds)
张璐, 何大伟, 何家琪, 付洋, 王永生. Effect of strain on exciton dynamics in monolayer WS2[J]. 中国物理B, 2019, 28(8): 87201-087201.
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Effect of strain on exciton dynamics in monolayer WS2[J]. Chin. Phys. B, 2019, 28(8): 87201-087201.
[39] |
He J Q, He D W, Wang Y S, Cui Q N, Ceballos F and Zhao H 2015 Nanoscale 7 9526
doi: 10.1039/C5NR00188A |
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
doi: 10.1126/science.1102896 |
[40] |
Cui Q, He J, Bellus M Z, Mirzokarimov M, Hofmann T, Chiu H Y, Antonik M, He D, Wang Y and Zhao H 2015 Small 11 5565
doi: 10.1002/smll.201501668 |
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
doi: 10.1038/nmat1849 |
[41] |
Cui Q N, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
doi: 10.1021/nn500277y |
[42] |
Kumar N, Cui Q N, Ceballos F, He D W, Wang Y S and Zhao H 2014 Phys. Rev. B 89 125427
doi: 10.1103/PhysRevB.89.125427 |
[3] | Tian H, Tan Z, Wu C, Wang X, Mohammad M A, Xie D, Yang Y, Wang J, Li L J, Xu J and Ren T L 2014 Sci. Rep. 4 5951 |
[43] |
Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Nanoscale 6 4915
doi: 10.1039/C3NR06863C |
[4] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
doi: 10.1038/nnano.2012.193 |
[44] |
Isl, J O, Kuc A, Diependaal E H, Bratschitsch R, van der Zant H S, Heine T and Castellanos-Gomez A 2016 Nanoscale 8 2589
doi: 10.1039/C5NR08219F |
[5] |
Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
doi: 10.1021/nn500064s |
[45] |
Schmidt R, Niehues I, Schneider R, Drüppel M, Deilmann T, Rohlfing M, de Vasconcellos S M, Castellanos-Gomez A and Bratschitsch R 2016 2D Materials 3 021011
doi: 10.1088/2053-1583/3/2/021011 |
[6] |
Kozawa D, Kumar R, Carvalho A, Kumar Amara K, Zhao W, Wang S, Toh M, Ribeiro R M, Castro Neto A H, Matsuda K and Eda G 2014 Nat. Commun. 5 4543
doi: 10.1038/ncomms5543 |
[46] |
Cui Q, Muniz R A, Sipe J E and Zhao H 2017 Phys. Rev. B 95 165406
doi: 10.1103/PhysRevB.95.165406 |
[7] |
Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
doi: 10.1080/00018736900101307 |
[47] |
Zhao W J, Ribeiro R M, Toh M L, Carvalho A, Kloc C, Neto A H C and Eda G 2013 Nano Lett. 13 5627
doi: 10.1021/nl403270k |
[8] |
Ataca C, Sahin H and Ciraci S 2012 J. Phys. Chem. C 116 8983
doi: 10.1021/jp212558p |
[48] |
Peimyoo N, Shang J Z, Cong C X, Shen X N, Wu X Y, Yeow E K L and Yu T 2013 ACS Nano 7 10985
doi: 10.1021/nn4046002 |
[9] |
Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
doi: 10.1021/nn203715c |
[49] |
He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622
doi: 10.1038/ncomms6622 |
[10] |
Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2014 Nat. Nano 9 262
doi: 10.1038/nnano.2014.25 |
[50] |
Pan S, Ceballos F, Bellus M Z, Zereshki P and Zhao H 2016 2D Materials 4 015033
doi: 10.1088/2053-1583/4/1/015033 |
[11] |
Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 5143
doi: 10.1038/ncomms6143 |
[51] |
Ceballos F, Cui Q, Bellus M Z and Zhao H 2016 Nanoscale 8 11681
doi: 10.1039/C6NR02516A |
[12] |
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
doi: 10.1021/nn2024557 |
[52] |
Ceballos F and Zhao H 2017 Adv. Funct. Mater. 27 1604509
doi: 10.1002/adfm.201604509 |
[13] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
doi: 10.1038/nnano.2013.100 |
[14] |
Cui S M, Pu H H, Wells S A, Wen Z H, Mao S, Chang J B, Hersam M C and Chen J H 2015 Nat. Commun. 6 8632
doi: 10.1038/ncomms9632 |
[15] |
Tsai M L, Su S H, Chang J K, Tsai D S, Chen C H, Wu C I, Li L J, Chen L J and He J H 2014 ACS Nano 8 8317
doi: 10.1021/nn502776h |
[16] |
Yun J M, Noh Y J, Lee C H, Na S I, Lee S, Jo S M, Joh H I and Kim D Y 2014 Small 10 2319
doi: 10.1002/smll.201303648 |
[17] |
Gourmelon E, Lignier O, Hadouda H, Couturier G, Bernede J C, Tedd J, Pouzet J and Salardenne J 1997 Sol. Energy Mater. Sol. Cells 46 115
doi: 10.1016/S0927-0248(96)00096-7 |
[18] |
Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H and Terrones M 2013 Nano Lett. 13 3447
doi: 10.1021/nl3026357 |
[19] |
Braga D, Lezama I G, Berger H and Morpurgo A F 2012 Nano Lett. 12 5218
doi: 10.1021/nl302389d |
[20] |
Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R T, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Houk T E M, Lopez-Urias F, Terrones H and Terrones M 2013 ACS Nano 7 5235
doi: 10.1021/nn400971k |
[21] |
Liu L, Kumar S B, Ouyang Y and Guo J 2011 IEEE Trans. Electron. Dev. 58 3042
doi: 10.1109/TED.2011.2159221 |
[22] |
Weijie Z, Zohreh G, Leiqiang C, Minglin T, Christian K, Ping-Heng T and Goki E 2013 ACS Nano 7 791
doi: 10.1021/nn305275h |
[23] |
Sang Y H, Zhao Z H, Zhao M W, Hao P, Leng Y H and Liu H 2015 Adv. Mater. 27 363
doi: 10.1002/adma.201403264 |
[24] |
Perea-Lopez N, Elias A L, Berkdemir A, Castro-Beltran A, Gutierrez H R, Feng S M, Lv R T, Hayashi T, Lopez-Urias F, Ghosh S, Muchharla B, Talapatra S, Terrones H and Terrones M 2013 Adv. Funct. Mater. 23 5511
doi: 10.1002/adfm.201300760 |
[25] |
Shanmugam M, Bansal T, Durcan C A and Yu B 2012 Appl. Phys. Lett. 101 263902
doi: 10.1063/1.4773525 |
[26] |
Cui Y, Xin R, Yu Z H, Pan Y M, Ong Z Y, Wei X X, Wang J Z, Nan H Y, Ni Z H, Wu Y, Chen T S, Shi Y, Wang B G, Zhang G, Zhang Y W and Wang X R 2015 Adv. Mater. 27 5230
doi: 10.1002/adma.201502222 |
[27] |
Lan C Y, Li C, Yin Y and Liu Y 2015 Nanoscale 7 5974
doi: 10.1039/C5NR01205H |
[28] |
Wang Y L, Cong C X, Yang W H, Shang J Z, Peimyoo N, Chen Y, Kang J Y, Wang J P, Huang W and Yu T 2015 Nano Res. 8 2562
doi: 10.1007/s12274-015-0762-6 |
[29] |
Zhang Q, Chang Z, Xu G, Wang Z, Zhang Y, Xu Z Q, Chen S, Bao Q, Liu J Z and Mai Y W 2016 Adv. Funct. Mater. 26 8707
doi: 10.1002/adfm.201603064 |
[30] |
Kou L, Du A, Chen C and Frauenheim T 2014 Nanoscale 6 5156
doi: 10.1039/C3NR06670C |
[31] |
Yu S, Zhu H, Eshun K, Shi C, Zeng M and Li Q 2016 Appl. Phys. Lett. 108 191901
doi: 10.1063/1.4947195 |
[32] |
Li M, Dai J and Zeng X C 2015 Nanoscale 7 15385
doi: 10.1039/C5NR04505C |
[33] |
Guzman D M and Strachan A 2014 J. Appl. Phys. 115 243701
doi: 10.1063/1.4883995 |
[34] |
Maniadaki A E, Kopidakis G and Remediakis I N 2016 Solid State Commun. 227 33
doi: 10.1016/j.ssc.2015.11.017 |
[35] |
He X, Li H, Zhu Z, Dai Z, Yang Y, Yang P, Zhang Q, Li P, Schwingenschlogl U and Zhang X 2016 Appl. Phys. Lett. 109 173105
doi: 10.1063/1.4966218 |
[36] |
Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
doi: 10.1021/nl501638a |
[37] |
Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J and Watanabe K 2013 ACS Nano 7 7931
doi: 10.1021/nn402954e |
[38] |
Shen T, Penumatcha A V and Appenzeller J 2016 ACS Nano 10 4712
doi: 10.1021/acsnano.6b01149 |
[39] |
He J Q, He D W, Wang Y S, Cui Q N, Ceballos F and Zhao H 2015 Nanoscale 7 9526
doi: 10.1039/C5NR00188A |
[40] |
Cui Q, He J, Bellus M Z, Mirzokarimov M, Hofmann T, Chiu H Y, Antonik M, He D, Wang Y and Zhao H 2015 Small 11 5565
doi: 10.1002/smll.201501668 |
[41] |
Cui Q N, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
doi: 10.1021/nn500277y |
[42] |
Kumar N, Cui Q N, Ceballos F, He D W, Wang Y S and Zhao H 2014 Phys. Rev. B 89 125427
doi: 10.1103/PhysRevB.89.125427 |
[43] |
Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Nanoscale 6 4915
doi: 10.1039/C3NR06863C |
[44] |
Isl, J O, Kuc A, Diependaal E H, Bratschitsch R, van der Zant H S, Heine T and Castellanos-Gomez A 2016 Nanoscale 8 2589
doi: 10.1039/C5NR08219F |
[45] |
Schmidt R, Niehues I, Schneider R, Drüppel M, Deilmann T, Rohlfing M, de Vasconcellos S M, Castellanos-Gomez A and Bratschitsch R 2016 2D Materials 3 021011
doi: 10.1088/2053-1583/3/2/021011 |
[46] |
Cui Q, Muniz R A, Sipe J E and Zhao H 2017 Phys. Rev. B 95 165406
doi: 10.1103/PhysRevB.95.165406 |
[47] |
Zhao W J, Ribeiro R M, Toh M L, Carvalho A, Kloc C, Neto A H C and Eda G 2013 Nano Lett. 13 5627
doi: 10.1021/nl403270k |
[48] |
Peimyoo N, Shang J Z, Cong C X, Shen X N, Wu X Y, Yeow E K L and Yu T 2013 ACS Nano 7 10985
doi: 10.1021/nn4046002 |
[49] |
He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622
doi: 10.1038/ncomms6622 |
[50] |
Pan S, Ceballos F, Bellus M Z, Zereshki P and Zhao H 2016 2D Materials 4 015033
doi: 10.1088/2053-1583/4/1/015033 |
[51] |
Ceballos F, Cui Q, Bellus M Z and Zhao H 2016 Nanoscale 8 11681
doi: 10.1039/C6NR02516A |
[52] |
Ceballos F and Zhao H 2017 Adv. Funct. Mater. 27 1604509
doi: 10.1002/adfm.201604509 |
[1] | Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Strain compensated type II superlattices grown by molecular beam epitaxy[J]. 中国物理B, 2023, 32(4): 46802-046802. |
[2] | Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)[J]. 中国物理B, 2023, 32(3): 36802-036802. |
[3] | Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films[J]. 中国物理B, 2023, 32(2): 27501-027501. |
[4] | Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain[J]. 中国物理B, 2022, 31(9): 97101-097101. |
[5] | Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy[J]. 中国物理B, 2022, 31(9): 98504-098504. |
[6] | Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain[J]. 中国物理B, 2022, 31(8): 87101-087101. |
[7] | Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). First-principles study of a new BP2 two-dimensional material[J]. 中国物理B, 2022, 31(8): 86107-086107. |
[8] | Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Valley-dependent transport in strain engineering graphene heterojunctions[J]. 中国物理B, 2022, 31(7): 77302-077302. |
[9] | Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Effect of strain on charge density wave order in α-U[J]. 中国物理B, 2022, 31(6): 67103-067103. |
[10] | Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Exciton luminescence and many-body effect of monolayer WS2 at room temperature[J]. 中国物理B, 2022, 31(5): 57803-057803. |
[11] | Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions[J]. 中国物理B, 2022, 31(4): 46103-046103. |
[12] | Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents[J]. 中国物理B, 2022, 31(2): 27803-027803. |
[13] | Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates[J]. 中国物理B, 2022, 31(12): 126801-126801. |
[14] | Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene[J]. 中国物理B, 2022, 31(12): 126101-126101. |
[15] | Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction[J]. 中国物理B, 2022, 31(11): 117403-117403. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|