中国物理B ›› 2007, Vol. 16 ›› Issue (7): 2003-2010.doi: 10.1088/1009-1963/16/7/033
杨建军1, 朱晓农1, 刘伟伟2
Yang Jian-Jun(杨建军)a) † , Liu Wei-Wei(刘伟伟)a) b), and Zhu Xiao-Nong(朱晓农)a)
摘要: Temperature dependence of the electron diffusion in metallic targets, where the electron--electron collision is the dominant process, is investigated with the help of an extended two-temperature model. In sharp contrast to the low electron temperature case, where only the electron---phonon collisions are commonly considered, the electron diffusion process underlying the high electron temperatures evolves dramatically different in both temporal and spatial domains. Calculated results of the ablation yield at different pulse durations are presented for a copper plate impinged by ultrashort laser pulses with energy fluences ranging from 0.1 J/cm2 to 10 J/cm2. The excellent agreement between the simulation results and the experimental data indicates the significant role of electron--electron collisions in material ablations using intense ultrashort laser pulses.
中图分类号: (Ultraviolet, visible, and infrared radiation effects (including laser radiation))