|
Spin polarization effect for Tc2 molecule
阎世英, 朱正和
2004 (12):
2053-2057.
doi: 10.1088/1009-1963/13/12/013
摘要
(
970 )
PDF(196KB)
(
497
)
Density functional method (DFT) (B3p86) of Gaussian98 has been used to optimize the structure of the Tc_2 molecule. The result shows that the ground state for Tc_2 molecule is an 11-multiple state and its electronic configuration is {}^{11}Σ_g^-, which shows the spin polarization effect of Tc_2 molecule of a transition metal element for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher energy states. So, that the ground state for Tc_2 molecule is an 11-multiple state is indicative of the spin polarization effect of Tc_2 molecule of a transition metal element: that is, there exist 10 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Tc_2 molecule is minimized. It can be concluded that the effect of parallel spin of the Tc_2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell--Sorbie potential functions with the parameters for the ground state {}^{11}Σ_g^- and other states of Tc_2 molecule are derived. Dissociation energy D_e for the ground state of T_{c2} molecule is 2.266eV, equilibrium bond length R_e is 0.2841nm, vibration frequency ω_e is 178.52cm^{-1}. Its force constants f_2, f_3, and f_4 are 0.9200aJ·nm^{-2}, --3.5700aJ·nm^{-3}, 11.2748aJ·nm^{-4} respectively. The other spectroscopic data for the ground state of Tc_2 molecule ω_eχ_e, B_e, α_e are 0.5523cm^{-1}, 0.0426cm^{-1}, 1.6331×10^{-4}cm^{-1} respectively.
相关文章 |
计量指标
|