中国物理B ›› 2015, Vol. 24 ›› Issue (12): 123101-123101.doi: 10.1088/1674-1056/24/12/123101
• ATOMIC AND MOLECULAR PHYSICS • 上一篇 下一篇
张月霞, 张小龙
Zhang Yue-Xia (张月霞), Zhang Xiao-Long (张小龙)
摘要:
As an improvement on our previous work [J. Phys. B: At. Mol. Opt. Phys. 45 085101 (2012)], an accurate method combining the spheroidal coordinates and B-spline basis is applied to study the ground state 1σg and low excited states 1σu, 1πg,u,1δg,u,2σg of the H2+ in magnetic fields ranging from 109 Gs (1 Gs=10-4 T) to 4.414×1013 Gs. Comparing the one-center method used in our previous work, the present method has a higher precision with a shorter computing time. Equilibrium distances of the states of the H2+ in strong magnetic fields were found to be accurate to 3~5 significant digits (s.d.) and the total energies 6~11 s.d., even for some antibonding state, such as 1πg, which is difficult for the one-center method to give reliable results while the field strength is B≥q1013 Gs. For the large disagreement in previous works, such as the equilibrium distances of the 1πg state at B=109 Gs, the present data may be used as a reference. Further, the potential energy curves (PECs) and the electronic probability density distributions (EPDDs) of the bound states 1σg, 1πu, 1δg and antibonding states 1σu, 1πg, 1δu for B=1, 10, 100, 1000 a.u. (atomic unit) are compared, so that the different influences of the magnetic fields on the chemical bonds of the bound states and antibonding states are discussed in detail.
中图分类号: (Theory of electronic structure, electronic transitions, and chemical binding)