中国物理B ›› 2015, Vol. 24 ›› Issue (3): 37502-037502.doi: 10.1088/1674-1056/24/3/037502

• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇    下一篇

Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)

吕益飞, 向建勇, 温福昇, 吕伟明, 胡文涛, 柳忠元   

  1. State Key Lab of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
  • 收稿日期:2014-08-23 修回日期:2014-10-13 出版日期:2015-03-05 发布日期:2015-03-05
  • 基金资助:

    Project supported by the National Basic Research Program of China (Grant No. 2010CB731605), the National Science Fund for Distinguished Young Scholars of China (Grant No. 51025103), the National Natural Science Foundation of China (Grant Nos. 51172198 and 51102206), the Natural Science Foundation of Hebei Province, China (Grant No. E2014203144), the Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province, China (Grant No. YQ2014009), and the Research Program of the College Science & Technology of Hebei Province, China (Grant No. QN2014047).

Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)

Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元)   

  1. State Key Lab of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
  • Received:2014-08-23 Revised:2014-10-13 Online:2015-03-05 Published:2015-03-05
  • Contact: Xiang Jian-Yong E-mail:jyxiang@ysu.edu.cn
  • Supported by:

    Project supported by the National Basic Research Program of China (Grant No. 2010CB731605), the National Science Fund for Distinguished Young Scholars of China (Grant No. 51025103), the National Natural Science Foundation of China (Grant Nos. 51172198 and 51102206), the Natural Science Foundation of Hebei Province, China (Grant No. E2014203144), the Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province, China (Grant No. YQ2014009), and the Research Program of the College Science & Technology of Hebei Province, China (Grant No. QN2014047).

摘要:

Single phase of Fe3+-doped α-Ga2-xFexO3 (α -GFxO, x=0.1, 0.2, 0.3, 0.4) is synthesized by treating the β -Ga2-xFexO3 (β -GFxO) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe3+ content. Calorimetric measurements show that the temperature of the phase transition from α -GFxO to β -GFxO increases, while the associated enthalpy change decreases upon increasing Fe3+ content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+ content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe3+ ions is antiferromagnetic. Remnant magnetization is observed in the Fe3+-doped α -GFxO and is attributed to the spin glass in the magnetic sublattice. At high Fe3+ doping level (x=0.4), two evident peaks are observed in the image part of the AC susceptibility χ" ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α -GF0.4O is suggested to be the behavior of two spin glasses.

关键词: α-Ga2O3, susceptibility, superexchange interaction, spin glass

Abstract:

Single phase of Fe3+-doped α-Ga2-xFexO3 (α -GFxO, x=0.1, 0.2, 0.3, 0.4) is synthesized by treating the β -Ga2-xFexO3 (β -GFxO) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe3+ content. Calorimetric measurements show that the temperature of the phase transition from α -GFxO to β -GFxO increases, while the associated enthalpy change decreases upon increasing Fe3+ content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+ content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe3+ ions is antiferromagnetic. Remnant magnetization is observed in the Fe3+-doped α -GFxO and is attributed to the spin glass in the magnetic sublattice. At high Fe3+ doping level (x=0.4), two evident peaks are observed in the image part of the AC susceptibility χ" ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α -GF0.4O is suggested to be the behavior of two spin glasses.

Key words: α-Ga2O3, susceptibility, superexchange interaction, spin glass

中图分类号:  (Magnetic impurity interactions)

  • 75.30.Hx
78.40.-q (Absorption and reflection spectra: visible and ultraviolet) 75.30.Cr (Saturation moments and magnetic susceptibilities) 75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)