中国物理B ›› 2013, Vol. 22 ›› Issue (5): 58702-058702.doi: 10.1088/1674-1056/22/5/058702

所属专题: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research

• SPECIAL TOPIC --- Non-equilibrium phenomena in soft matters • 上一篇    下一篇

Magnetic nanoparticle-based cancer nanodiagnostics

Muhammad Zubair Yousafa, 余靓a, 侯仰龙a, 高松b   

  1. a Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
    b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • 收稿日期:2013-03-28 出版日期:2013-04-01 发布日期:2013-04-01
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 51125001, 51172005, and 90922033), the Research Fellowship for International Young Scientists of the National Natural Science Foundation of China (Grant No. 51250110078), the Doctoral Program of the Education Ministry of China (Grant No. 20120001110078), and the PKU COE-Health Science Center Seed Fund, China.

Magnetic nanoparticle-based cancer nanodiagnostics

Muhammad Zubair Yousafa, Yu Jing (余靓)a, Hou Yang-Long (侯仰龙)a, Gao Song (高松)b   

  1. a Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
    b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2013-03-28 Online:2013-04-01 Published:2013-04-01
  • Contact: Hou Yang-Long E-mail:hou@pku.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 51125001, 51172005, and 90922033), the Research Fellowship for International Young Scientists of the National Natural Science Foundation of China (Grant No. 51250110078), the Doctoral Program of the Education Ministry of China (Grant No. 20120001110078), and the PKU COE-Health Science Center Seed Fund, China.

摘要: Diagnosis facilitates the discovery of an impending disease. A complete and accurate treatment of cancer depends heavily on its early medical diagnosis. Cancer, one of the most fatal diseases world-wide, consistently affects a larger number of patients each year. Magnetism, a physical property arising from the motion of electrical charges, which causes attraction and repulsion between objects and does not involve radiation, has been under intense investigation for several years. Magnetic materials show great promise in the application of image contrast enhancement to accurately image and diagnose cancer. Chelating gadolinium (Gd III) and magnetic nanoparticles (MNPs) have the prospect to pave the way for diagnosis, operative management, and adjuvant therapy of different kinds of cancers. The potential of MNP-based magnetic resonance (MR) contrast agents (CAs) now makes it possible to image portions of a tumor in parts of the body that would be unclear with the conventional magnetic resonance imaging (MRI). Multiple functionalities like variety of targeting ligands and image contrast enhancement have recently been added to the MNPs. Keeping aside the additional complexities in synthetic steps, costs, more convoluted behavior, and effects in-vivo, multifunctional MNPs still face great regulatory hurdles before clinical availability for cancer patients. The trade-off between additional functionality and complexity is a subject of ongoing debate. The recent progress regarding the types, design, synthesis, morphology, characterization, modification, and the in-vivo and in-vitro uses of different MRI contrast agents, including MNPs, to diagnose cancer will be the focus of this review. As our knowledge of MNPs’ characteristics and applications expands, their role in the future management of cancer patients will become very important. Current hurdles are also discussed, along with future prospects of MNPs as the savior of cancer victims.

关键词: cancer, magnetic nanoparticle, magnetism, diagnosis, nanotechnology

Abstract: Diagnosis facilitates the discovery of an impending disease. A complete and accurate treatment of cancer depends heavily on its early medical diagnosis. Cancer, one of the most fatal diseases world-wide, consistently affects a larger number of patients each year. Magnetism, a physical property arising from the motion of electrical charges, which causes attraction and repulsion between objects and does not involve radiation, has been under intense investigation for several years. Magnetic materials show great promise in the application of image contrast enhancement to accurately image and diagnose cancer. Chelating gadolinium (Gd III) and magnetic nanoparticles (MNPs) have the prospect to pave the way for diagnosis, operative management, and adjuvant therapy of different kinds of cancers. The potential of MNP-based magnetic resonance (MR) contrast agents (CAs) now makes it possible to image portions of a tumor in parts of the body that would be unclear with the conventional magnetic resonance imaging (MRI). Multiple functionalities like variety of targeting ligands and image contrast enhancement have recently been added to the MNPs. Keeping aside the additional complexities in synthetic steps, costs, more convoluted behavior, and effects in-vivo, multifunctional MNPs still face great regulatory hurdles before clinical availability for cancer patients. The trade-off between additional functionality and complexity is a subject of ongoing debate. The recent progress regarding the types, design, synthesis, morphology, characterization, modification, and the in-vivo and in-vitro uses of different MRI contrast agents, including MNPs, to diagnose cancer will be the focus of this review. As our knowledge of MNPs’ characteristics and applications expands, their role in the future management of cancer patients will become very important. Current hurdles are also discussed, along with future prospects of MNPs as the savior of cancer victims.

Key words: cancer, magnetic nanoparticle, magnetism, diagnosis, nanotechnology

中图分类号:  (Cancer)

  • 87.19.xj
87.57.-s (Medical imaging) 87.61.-c (Magnetic resonance imaging) 87.85.-d (Biomedical engineering)