中国物理B ›› 2010, Vol. 19 ›› Issue (11): 117103-117104.doi: 10.1088/1674-1056/19/11/117103
陈中钧1, 田东斌2
收稿日期:
2010-05-05
修回日期:
2010-05-26
出版日期:
2010-11-15
发布日期:
2010-11-15
Chen Zhong-Jun(陈中钧)a)† and Tian Dong-Bin(田东斌)b)
Received:
2010-05-05
Revised:
2010-05-26
Online:
2010-11-15
Published:
2010-11-15
摘要: This paper investigates the electronic and optical properties for pure and Ce3+-doped CaS crystals by using the first-principles total energy calculations. The results show that CaS:Ce has a direct band gap of 2.16 eV, and the top of the valence band is determined by S 3p states and the bottom of the conduction band is determined by Ce 4f states, respectively. Our results validate that the yellow emission from CaS:Ce is produced by doped cerium and the green emission quenches at 12.5% cerium concentration. The Ce-S bond shows more covalent character than the Ca-S bond.
中图分类号: (Density functional theory, local density approximation, gradient and other corrections)
陈中钧, 田东斌. Electronic and optical properties of pure and Ce3+-doped CaS single crystals: a first-principles prediction[J]. 中国物理B, 2010, 19(11): 117103-117104.
Chen Zhong-Jun(陈中钧) and Tian Dong-Bin(田东斌). Electronic and optical properties of pure and Ce3+-doped CaS single crystals: a first-principles prediction[J]. Chin. Phys. B, 2010, 19(11): 117103-117104.
[1] | Liu Y P, Chen Z Y, Fan Y W, Ba W Z, Guo Q, Lu W, Tang X Q and Du Y Z 2008 Chin. Phys. B 17 3156 |
[2] | Jia D D, Wu B Q, Zhu J and Lu L 1999 Chin. Phys. 8 813 |
[3] | Smet P, Wauters D, Poelman D and Meirhaeghe R L V 2001 Solid State Commun. 118 59 |
[4] | Wauters D, Poelman D, Meirhaeghe R L V and Cardon F 2000 J. Phys.: Condens. Matter 12 3901 |
[5] | Smet P F, Gheluwe J V, Poelman D and Meirhaeghe R L V 2003 J. Lumin. 104 145 |
[6] | Pham-Thi M 1995 J. Alloys Compd. 225 547 |
[7] | Tanaka S, Yoshiyama H, Nakamura K, Wada S, Morita H and Kobayashi H 1991 J. Appl. Phys. 30 L1021 |
[8] | Vecht A, Mayo J W and Higton M H 1977 Digest SID International Symposium (Los Angeles: Society for Information Display) p88 |
[9] | Vecht A, Waite M, Higton M H and Ellis R 1981 J. Lumin. 24/25 917 |
[10] | Vij D R and Mathur V K 1969 Ind. J. Pure Appl. Phys. 7 638 |
[11] | Vij D R, Mathur V K, Shanker V and Ghosh P K 1976 J. Phys. D: Appl. Phys 9 1509 |
[12] | Shanker V, Tanaka S, Shiiki M, Deguchi H, Kobayashi H and Sasakura H 1984 Appl. Phys. Lett. 45 960 |
[13] | Kim H K, Park H L, Yu I, Chang S K and Chung C H 1990 J. Mater. Sci. Lett. 9 57 |
[14] | Jia D, Meltzer R S and Yen W M 2002 J. Lumin. 99 1 |
[15] | Zhao L, Lu P F, Yu Z Y, Liu Y M, Wang D L and Ye H 2010 Chin. Phys. B 19 056104 |
[16] | Cheng Z D, Ling T and Zhu J 2010 Chin. Phys. B 19 057101 |
[17] | Chen Z J, Xiao H Y and Zu X T 2005 Acta Phys. Sin. 54 5301 (in Chinese) |
[18] | Xu L, Tang C Q and Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) |
[19] | Chen Z J, Xiao H Y and Zu X T 2007 Physica B: Condensed Matter 391 193 |
[20] | Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413 |
[21] | Hamann D R, Schluter M and Chiang C 1979 Phys. Rev. Lett. 43 1494 |
[22] | Xu Y N and Ching W Y 1991 Phys. Rev. B 44 7787 |
[23] | Xu Y N and Ching W Y 1991 Phys. Rev. B 44 11048 |
[24] | Xu Y N and Ching W Y 1991 Phys. Rev. B 44 5332 |
[25] | Loughlin S, French R H, Ching W Y, Xu Y N and Slack G A 1993 Appl. Phys. Lett. 63 1182 |
[26] | Xu Y N and W Y Ching 1993 Phys. Rev. B 48 17695 |
[27] | French R H, Glass S J, Oguchi F S, Xu Y N and Ching W Y 1993 Phys. Rev. B 49 5133 |
[28] | Ching W Y, Liu L and Xu Y N 1994 Ferroelectric 153 25 |
[29] | Xu Y N and Ching W Y 1991 Phys. Rev. B 43 4461 |
[30] | Xu Y N and Ching W Y 1993 Phys. Rev. B 48 4335 |
[31] | Ekbundity S and Chizmeshyayz A 1996 J. Phys.: Condens Matter 8 8251 |
[32] | Luo H, Green R G, Ghandehari K, Li T and Ruoff A L 1994 Phys. Rev. B 50 16232 |
[33] | Chen Z J, Zu X T, Wang Y X and Xue S W 2009 J. Appl. Phys. 105 063532 |
[34] | Stepanyuk V S and Szasz A 1989 Phys. Status Solidi B 155 215 |
[35] | Pandey R, Jaffe J E and Kunz A B 1991 Phys. Rev. B 43 9228 |
[36] | Ching W Y, Gan F and Huang M Z 1995 Phys. Rev. B 52 1596 |
[37] | Kaneko Y, Morimoto K and Koda T 1983 J. Phys. Soc. Jpn. 52 4385 |
[38] | Kaneko Y and Koda T 1988 J. Cryst. Growth 86 72 |
[39] | Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828 |
[40] | Shaukat A, Saeed Y, Ikram N and Akbarzadeh H 2008 Eur. Phys. J. B 62 439 |
[41] | Hughes J P and Sipe J E 1996 Phys. Rev. B 53 10751 |
[42] | Lines M E 1990 Phys. Rev. B 41 3372 endfootnotesize |
[1] | Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability[J]. 中国物理B, 2023, 32(4): 47102-047102. |
[2] | Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F[J]. 中国物理B, 2023, 32(3): 37101-037101. |
[3] | Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal[J]. 中国物理B, 2023, 32(3): 37103-037103. |
[4] | Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride[J]. 中国物理B, 2023, 32(3): 37104-037104. |
[5] | Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice[J]. 中国物理B, 2023, 32(2): 27101-027101. |
[6] | Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics[J]. 中国物理B, 2023, 32(2): 27104-027104. |
[7] | Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Magnetic ground state of plutonium dioxide: DFT+U calculations[J]. 中国物理B, 2023, 32(2): 27103-027103. |
[8] | Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene[J]. 中国物理B, 2022, 31(12): 126101-126101. |
[9] | Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Robust and intrinsic type-III nodal points in a diamond-like lattice[J]. 中国物理B, 2022, 31(11): 117101-117101. |
[10] | Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure[J]. 中国物理B, 2022, 31(10): 107304-107304. |
[11] | Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Advances and challenges in DFT-based energy materials design[J]. 中国物理B, 2022, 31(10): 107105-107105. |
[12] | Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). First-principles study of a new BP2 two-dimensional material[J]. 中国物理B, 2022, 31(8): 86107-086107. |
[13] | Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Adaptive semi-empirical model for non-contact atomic force microscopy[J]. 中国物理B, 2022, 31(8): 88202-088202. |
[14] | Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons[J]. 中国物理B, 2022, 31(8): 87103-087103. |
[15] | Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures[J]. 中国物理B, 2022, 31(6): 67101-067101. |
|