中国物理B ›› 2023, Vol. 32 ›› Issue (1): 10305-010305.doi: 10.1088/1674-1056/ac9224
Dan Wu(吴丹)1,3, Xiao Li(李骁)1,3, Liang-Liang Wang(王亮亮)1, Jia-Shun Zhang(张家顺)1,†, Wei Chen(陈巍)4, Yue Wang(王玥)1, Hong-Jie Wang(王红杰)1, Jian-Guang Li(李建光)1, Xiao-Jie Yin(尹小杰)1, Yuan-Da Wu(吴远大)1,2,3, Jun-Ming An(安俊明)1,‡, and Ze-Guo Song(宋泽国)5
Dan Wu(吴丹)1,3, Xiao Li(李骁)1,3, Liang-Liang Wang(王亮亮)1, Jia-Shun Zhang(张家顺)1,†, Wei Chen(陈巍)4, Yue Wang(王玥)1, Hong-Jie Wang(王红杰)1, Jian-Guang Li(李建光)1, Xiao-Jie Yin(尹小杰)1, Yuan-Da Wu(吴远大)1,2,3, Jun-Ming An(安俊明)1,‡, and Ze-Guo Song(宋泽国)5
摘要: Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach-Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 ℃. The delay time change is 0.321 ps within a temperature change of 40 ℃. The spectral shift is 0.0011 nm/0.1 ℃. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.
中图分类号: (Quantum cryptography and communication security)