中国物理B ›› 2018, Vol. 27 ›› Issue (2): 25206-025206.doi: 10.1088/1674-1056/27/2/025206
• PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES • 上一篇 下一篇
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩)
Hong-Yu Guo(郭宏宇)1,2, Li-Feng Wang(王立锋)2,3, Wen-Hua Ye(叶文华)2,3, Jun-Feng Wu(吴俊峰)2, Ying-Jun Li(李英骏)4, Wei-Yan Zhang(张维岩)2,3
摘要: Rayleigh-Taylor instability (RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered.
中图分类号: (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))