中国物理B ›› 2016, Vol. 25 ›› Issue (10): 107701-107701.doi: 10.1088/1674-1056/25/10/107701
• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇 下一篇
Li-Wei Niu(牛利伟), Chang-Le Chen(陈长乐), Xiang-Lei Dong(董祥雷), Hui Xing(邢辉), Bing-Cheng Luo(罗炳成), Ke-Xin Jin(金克新)
Li-Wei Niu(牛利伟), Chang-Le Chen(陈长乐), Xiang-Lei Dong(董祥雷), Hui Xing(邢辉), Bing-Cheng Luo(罗炳成), Ke-Xin Jin(金克新)
摘要:
Multiferroic materials, showing the coexistence and coupling of ferroelectric and magnetic orders, are of great technological and fundamental importance. However, the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically. Magnetic frustration, which can induce ferroelectricity, gives rise to multiferroic behavior. In this paper, we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity. A disordered stacking of manganites is expected to result in frustration at interfaces. We report here that a tri-color multilayer structure comprised of non-ferroelectric La0.9Ca0.1MnO3(A)/Pr0.85Ca0.15MnO3(B)/Pr0.85Sr0.15MnO3(C) layers with the disordered arrangement of ABC-ACB-CAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics. The multilayer film exhibits evidence of ferroelectricity at room temperature, thus presenting a candidate for multiferroics.
中图分类号: (Multiferroic/magnetoelectric films)