中国物理B ›› 2015, Vol. 24 ›› Issue (12): 126103-126103.doi: 10.1088/1674-1056/24/12/126103
• CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES • 上一篇 下一篇
谢秋荣, 张建, 尹东明, 郭奇勋, 李宁
Xie Qiu-Rong (谢秋荣), Zhang Jian (张建), Yin Dong-Min (尹东明), Guo Qi-Xun (郭奇勋), Li Ning (李宁)
摘要:
Polycrystalline pyrochlore Lu2Ti2O7 pellets are irradiated with 600-keV Kr3+ ions up to a fluence of 1.45× 1016 Kr3+/cm2. Irradiation induced structural modifications are examined by using grazing incidence x-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The GIXRD reveals that amorphous fraction increases with the increase of fluences up to 2× 1015 Kr3+/cm2, and the results are explained with a direct-impact model. However, when the irradiation fluence is higher than 2× 1015 Kr3+/cm2, the amorphous fraction reaches a saturation of ~ 80%. Further TEM observations imply that nano-crystal is formed with a diameter of ~ 10 nm within the irradiation layer at a fluence of 4×1015 Kr3+/cm2. No full amorphization is achieved even at the highest fluence of 1.45× 1016 Kr3+/cm2 (~ 36 displacement per atom). The high irradiation resistance of pyrochlore Lu2Ti2O7 at higher fluence is explained on the basis of enhanced radiation tolerance of nano-crystal structure.
中图分类号: (Physical radiation effects, radiation damage)