|
Up-conversion luminescence research of Er(0.5):ZBLAN material for volumetric display application when excited by 1520 nm laser
陈晓波, 张福初, 陈鸾
2003 (12):
1451-1458.
doi: 10.1088/1009-1963/12/12/020
摘要
(
1274 )
PDF(269KB)
(
347
)
The up-conversion luminescence of the ZBLAN fluoride glass Er(0.5):ZBLAN, when excited by a 1520 nm semiconductor laser, is studied in this paper. The absorption and common-fluorescence spectra are also measured in order to understand the up-conversion clearly. It is found that there are seven strong up-conversion luminescence lines (406.97^m, 410.42 nm), (521.97^m, 527.56 nm), (542.38^m, 549.27 nm), (654.27^m, 665.70 nm), 801.57^m nm, 819.46 nm, and 840.00 nm, which can be recognized as the fluorescence transitions of ({}^2G^4F^2H)_{9/2}→{}^4I_{15/2},{}^2H_{11/2}→ {}^4I_{15/2},{}^4S_{3/2}→{}^4I_{15/2},{}^4F_{9/2}→{}^4I_{15/2}, {}^4I_{9/2}→ {}^4I_{15/2}, ({}^2G^4F^2H)_{9/2}→{}^4I_{9/2}, and {}^4S_{3/2}→{}^4I_{13/2} respectively. Meanwhile, the small up-conversion fluorescence lines 379.20 nm, 453.10 nm and 490.60 nm are the transitions of {}^4G_{11/2}→{}^4I_{15/2},{}^4F_{5/2}→{}^4I_{15/2} and {}^4F_{7/2}→ {}^4I_{15/2} respectively. It is interesting that the slopes of log F-logP curves, the double-logarithmic variation of up-conversion luminescence intensity F with laser power P, are different from each other for these observed up-conversion luminescence, this being valuable for the volumetric display. Comprehensive discussions find that the {}^4G_{11/2}→{}^4I_{15/2}, (^2G^4F^2H)_{9/2}→{}^4I_{15/2}, (^2H_{11/2}→{}^4I_{15/2},{}^4S_{3/2}→{}^4I_{15/2},{}^4F_{9/2}→ {}^4I_{15/2}), and {}^4I_{9/2}→{}^4I_{15/2} up-conversion luminescences are five-photon, four-photon, three-photon, and two-photon up-conversion luminescences respectively. It is found also that the absorption from ground-state {}^4I_{15/2} level to {}^4I_{13/2} level is very large, which is beneficial to the sequential energy transfer up-conversion to occur.
相关文章 |
计量指标
|