中国物理B ›› 2022, Vol. 31 ›› Issue (5): 57801-057801.doi: 10.1088/1674-1056/ac439e

• • 上一篇    下一篇

Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method

Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad   

  1. Department of Physics, International Islamic University, Islamabad 44000, Pakistan
  • 收稿日期:2021-09-14 修回日期:2021-11-28 出版日期:2022-05-14 发布日期:2022-04-21
  • 通讯作者: Imran Murtaza,E-mail:imran.murtaza@iiu.edu.pk E-mail:imran.murtaza@iiu.edu.pk
  • 基金资助:
    The authors acknowledge the technical support provided by the COMSATS University and National Centre for Physics,Islamabad Pakistan.

Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method

Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad   

  1. Department of Physics, International Islamic University, Islamabad 44000, Pakistan
  • Received:2021-09-14 Revised:2021-11-28 Online:2022-05-14 Published:2022-04-21
  • Contact: Imran Murtaza,E-mail:imran.murtaza@iiu.edu.pk E-mail:imran.murtaza@iiu.edu.pk
  • About author:2021-12-16
  • Supported by:
    The authors acknowledge the technical support provided by the COMSATS University and National Centre for Physics,Islamabad Pakistan.

摘要: We explore the photoluminescence properties of zinc silicate (Zn2SiO4) nanostructures synthesized by vapor-liquid-solid (VLS) mode of growth using three different catalysts (Sn, Ag, and Mn). Different catalysts significantly influence the growth rate which in turn has an impact on the structure and hence the photoluminescence of the prepared zinc silicate nanostructures. Zn2SiO4 has a wide bandgap of about 5.5 eV and in its pure form, it does not emit in visible region due to its inner shell electronic transitions between the 3d5 energy levels. However, the incorporation of different catalysts (Sn, Ag and Mn) at different growth temperatures into the Zn2SiO4 crystal growth kinetics provides wide visible spectral range of photoluminescence (PL) emissions. PL analysis shows broad multi-band spectrum in the visible region and distinct colors (red, yellow, green, blue, cyan and violet) are obtained depending on the crystalline structure of the prepared nanostructures. The allowed transitions due to the effect of different catalysts on zinc silicate lattice offer a huge cross-section of absorption that generates strong photoluminescence. The correlation between the structural and optical properties of the synthesized nanostructures is discussed in detail. The synthesized photoluminescent nanostructures have potential applications in solid-state lighting and display devices.

关键词: nanostructures, vapor-liquid-solid growth mode, photoluminescence spectra, fluorescence microscopy

Abstract: We explore the photoluminescence properties of zinc silicate (Zn2SiO4) nanostructures synthesized by vapor-liquid-solid (VLS) mode of growth using three different catalysts (Sn, Ag, and Mn). Different catalysts significantly influence the growth rate which in turn has an impact on the structure and hence the photoluminescence of the prepared zinc silicate nanostructures. Zn2SiO4 has a wide bandgap of about 5.5 eV and in its pure form, it does not emit in visible region due to its inner shell electronic transitions between the 3d5 energy levels. However, the incorporation of different catalysts (Sn, Ag and Mn) at different growth temperatures into the Zn2SiO4 crystal growth kinetics provides wide visible spectral range of photoluminescence (PL) emissions. PL analysis shows broad multi-band spectrum in the visible region and distinct colors (red, yellow, green, blue, cyan and violet) are obtained depending on the crystalline structure of the prepared nanostructures. The allowed transitions due to the effect of different catalysts on zinc silicate lattice offer a huge cross-section of absorption that generates strong photoluminescence. The correlation between the structural and optical properties of the synthesized nanostructures is discussed in detail. The synthesized photoluminescent nanostructures have potential applications in solid-state lighting and display devices.

Key words: nanostructures, vapor-liquid-solid growth mode, photoluminescence spectra, fluorescence microscopy

中图分类号:  (Structural classes of nanoscale systems)

  • 62.23.-c
61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling) 78.55.-m (Photoluminescence, properties and materials) 78.70.En (X-ray emission spectra and fluorescence)