中国物理B ›› 2021, Vol. 30 ›› Issue (8): 87101-087101.doi: 10.1088/1674-1056/ac0a60
Meng Lyu(吕孟)1,2, Hengcan Zhao(赵恒灿)1, Jiahao Zhang(张佳浩)1,2, Zhen Wang(王振)1,2, Shuai Zhang(张帅)1,2, and Peijie Sun(孙培杰)1,2,3,†
Meng Lyu(吕孟)1,2, Hengcan Zhao(赵恒灿)1, Jiahao Zhang(张佳浩)1,2, Zhen Wang(王振)1,2, Shuai Zhang(张帅)1,2, and Peijie Sun(孙培杰)1,2,3,†
摘要: Needle-like single crystals of CeAu2In4 have been grown from In flux and characterized as a new candidate of quasi-one-dimensional Kondo lattice compound by crystallographic, magnetic, transport, and specific-heat measurements down to very low temperatures. We observe an antiferromagnetic transition at TN ≈ 0.9 K, a highly non-mean-field profile of the corresponding peak in specific heat, and a large Sommerfeld coefficient γ =369 mJ·mol-1·K-2. The Kondo temperature TK is estimated to be 1.1 K, being low and comparable to TN. While Fermi liquid behavior is observed deep into the magnetically ordered phase, the Kadowaki-Woods ratio is much reduced relative to the expected value for Ce compounds with Kramers doublet ground state. Markedly, this feature shares striking similarities to that of the prototypical quasi-one-dimensional compounds YbNi4P2 and CeRh6Ge4 with tunable ferromagnetic quantum critical point. Given the shortest Ce-Ce distance along the needle direction, CeAu2In4 appears to be an interesting model system for exploring antiferromagnetic quantum critical behaviors in a quasi-one-dimensional Kondo lattice with enhanced quantum fluctuations.
中图分类号: (Strongly correlated electron systems; heavy fermions)